import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow from tensorflow import keras from keras import layers from config import * import data import tard_wrangler dataset = data.get_data() # XXX: add more conv layers model = keras.Sequential([ keras.Input(shape=(3, LINE_WIDTH, 1)), layers.Conv2D( filters=16, kernel_size=(3,3), strides=(1,1), activation='relu', padding='valid', ), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(MAX_SHIMS) #activation='softmax' ]) model.compile( optimizer='adam', loss='mse', metrics=['mae'] ) model.fit(dataset['in'], dataset['out'], verbose=2, batch_size=10, epochs=50, shuffle=True, ) prediction = model.predict(dataset['in'])[0] prediction = prediction.astype(np.uint8).tobytes() tard_wrangler.build("data/xop.c.norm", prediction)