2023-08-01 19:50:29 +02:00

267 lines
7.4 KiB
C++

/*
Copyright (C) 2003, 2010 - Wolfire Games
Copyright (C) 2010-2017 - Lugaru contributors (see AUTHORS file)
This file is part of Lugaru.
Lugaru is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Lugaru is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Lugaru. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Math/XYZ.hpp"
bool PointInTriangle(XYZ* p, XYZ normal, XYZ* p1, XYZ* p2, XYZ* p3)
{
static float u0, u1, u2;
static float v0, v1, v2;
static float a, b;
static float max;
static int i, j;
static bool bInter = 0;
static float pointv[3];
static float p1v[3];
static float p2v[3];
static float p3v[3];
static float normalv[3];
bInter = 0;
pointv[0] = p->x;
pointv[1] = p->y;
pointv[2] = p->z;
p1v[0] = p1->x;
p1v[1] = p1->y;
p1v[2] = p1->z;
p2v[0] = p2->x;
p2v[1] = p2->y;
p2v[2] = p2->z;
p3v[0] = p3->x;
p3v[1] = p3->y;
p3v[2] = p3->z;
normalv[0] = normal.x;
normalv[1] = normal.y;
normalv[2] = normal.z;
#define ABS(X) (((X) < 0.f) ? -(X) : (X))
#define MAX(A, B) (((A) < (B)) ? (B) : (A))
max = MAX(MAX(ABS(normalv[0]), ABS(normalv[1])), ABS(normalv[2]));
#undef MAX
if (max == ABS(normalv[0])) {
i = 1; // y, z
j = 2;
}
if (max == ABS(normalv[1])) {
i = 0; // x, z
j = 2;
}
if (max == ABS(normalv[2])) {
i = 0; // x, y
j = 1;
}
#undef ABS
u0 = pointv[i] - p1v[i];
v0 = pointv[j] - p1v[j];
u1 = p2v[i] - p1v[i];
v1 = p2v[j] - p1v[j];
u2 = p3v[i] - p1v[i];
v2 = p3v[j] - p1v[j];
if (u1 > -1.0e-05f && u1 < 1.0e-05f) { // == 0.0f)
b = u0 / u2;
if (0.0f <= b && b <= 1.0f) {
a = (v0 - b * v2) / v1;
if ((a >= 0.0f) && ((a + b) <= 1.0f)) {
bInter = 1;
}
}
} else {
b = (v0 * u1 - u0 * v1) / (v2 * u1 - u2 * v1);
if (0.0f <= b && b <= 1.0f) {
a = (u0 - b * u2) / u1;
if ((a >= 0.0f) && ((a + b) <= 1.0f)) {
bInter = 1;
}
}
}
return bInter;
}
bool LineFacet(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ* p)
{
static float d;
static float denom, mu;
static XYZ n;
//Calculate the parameters for the plane
n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
Normalise(&n);
d = -n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (fabs(denom) < 0.0000001) { // Line and plane don't intersect
return 0;
}
mu = -(d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) { // Intersection not along line segment
return 0;
}
if (!PointInTriangle(p, n, &pa, &pb, &pc)) {
return 0;
}
return 1;
}
float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ* p)
{
static float d;
static float denom, mu;
static XYZ n;
//Calculate the parameters for the plane
n.x = (pb.y - pa.y) * (pc.z - pa.z) - (pb.z - pa.z) * (pc.y - pa.y);
n.y = (pb.z - pa.z) * (pc.x - pa.x) - (pb.x - pa.x) * (pc.z - pa.z);
n.z = (pb.x - pa.x) * (pc.y - pa.y) - (pb.y - pa.y) * (pc.x - pa.x);
Normalise(&n);
d = -n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (fabs(denom) < 0.0000001) { // Line and plane don't intersect
return 0;
}
mu = -(d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) { // Intersection not along line segment
return 0;
}
if (!PointInTriangle(p, n, &pa, &pb, &pc)) {
return 0;
}
return 1;
}
float LineFacetd(XYZ p1, XYZ p2, XYZ pa, XYZ pb, XYZ pc, XYZ n, XYZ* p)
{
static float d;
static float denom, mu;
//Calculate the parameters for the plane
d = -n.x * pa.x - n.y * pa.y - n.z * pa.z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2.x - p1.x) + n.y * (p2.y - p1.y) + n.z * (p2.z - p1.z);
if (fabs(denom) < 0.0000001) { // Line and plane don't intersect
return 0;
}
mu = -(d + n.x * p1.x + n.y * p1.y + n.z * p1.z) / denom;
p->x = p1.x + mu * (p2.x - p1.x);
p->y = p1.y + mu * (p2.y - p1.y);
p->z = p1.z + mu * (p2.z - p1.z);
if (mu < 0 || mu > 1) { // Intersection not along line segment
return 0;
}
if (!PointInTriangle(p, n, &pa, &pb, &pc)) {
return 0;
}
return 1;
}
float LineFacetd(XYZ* p1, XYZ* p2, XYZ* pa, XYZ* pb, XYZ* pc, XYZ* p)
{
static float d;
static float denom, mu;
static XYZ n;
//Calculate the parameters for the plane
n.x = (pb->y - pa->y) * (pc->z - pa->z) - (pb->z - pa->z) * (pc->y - pa->y);
n.y = (pb->z - pa->z) * (pc->x - pa->x) - (pb->x - pa->x) * (pc->z - pa->z);
n.z = (pb->x - pa->x) * (pc->y - pa->y) - (pb->y - pa->y) * (pc->x - pa->x);
Normalise(&n);
d = -n.x * pa->x - n.y * pa->y - n.z * pa->z;
//Calculate the position on the line that intersects the plane
denom = n.x * (p2->x - p1->x) + n.y * (p2->y - p1->y) + n.z * (p2->z - p1->z);
if (fabs(denom) < 0.0000001) { // Line and plane don't intersect
return 0;
}
mu = -(d + n.x * p1->x + n.y * p1->y + n.z * p1->z) / denom;
p->x = p1->x + mu * (p2->x - p1->x);
p->y = p1->y + mu * (p2->y - p1->y);
p->z = p1->z + mu * (p2->z - p1->z);
if (mu < 0 || mu > 1) { // Intersection not along line segment
return 0;
}
if (!PointInTriangle(p, n, pa, pb, pc)) {
return 0;
}
return 1;
}
float LineFacetd(XYZ* p1, XYZ* p2, XYZ* pa, XYZ* pb, XYZ* pc, XYZ* n, XYZ* p)
{
static float d;
static float denom, mu;
//Calculate the parameters for the plane
d = -n->x * pa->x - n->y * pa->y - n->z * pa->z;
//Calculate the position on the line that intersects the plane
denom = n->x * (p2->x - p1->x) + n->y * (p2->y - p1->y) + n->z * (p2->z - p1->z);
if (fabs(denom) < 0.0000001) { // Line and plane don't intersect
return 0;
}
mu = -(d + n->x * p1->x + n->y * p1->y + n->z * p1->z) / denom;
p->x = p1->x + mu * (p2->x - p1->x);
p->y = p1->y + mu * (p2->y - p1->y);
p->z = p1->z + mu * (p2->z - p1->z);
if (mu < 0 || mu > 1) { // Intersection not along line segment
return 0;
}
if (!PointInTriangle(p, *n, pa, pb, pc)) {
return 0;
}
return 1;
}
XYZ::operator Json::Value()
{
Json::Value xyz;
xyz[0] = x;
xyz[1] = y;
xyz[2] = z;
return xyz;
}