From 7256502afa0babe60fcafbd2888cd3e33c3f9b6b Mon Sep 17 00:00:00 2001 From: xolatile Date: Wed, 16 Jul 2025 23:07:43 +0200 Subject: Source code, broken... --- src/shared/geom.h | 1828 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1828 insertions(+) create mode 100644 src/shared/geom.h (limited to 'src/shared/geom.h') diff --git a/src/shared/geom.h b/src/shared/geom.h new file mode 100644 index 0000000..3adccc6 --- /dev/null +++ b/src/shared/geom.h @@ -0,0 +1,1828 @@ +struct vec; +struct vec4; + +struct vec2 +{ + union + { + struct { float x, y; }; + float v[2]; + }; + + vec2() {} + vec2(float x, float y) : x(x), y(y) {} + explicit vec2(const vec &v); + explicit vec2(const vec4 &v); + + float &operator[](int i) { return v[i]; } + float operator[](int i) const { return v[i]; } + + bool operator==(const vec2 &o) const { return x == o.x && y == o.y; } + bool operator!=(const vec2 &o) const { return x != o.x || y != o.y; } + + bool iszero() const { return x==0 && y==0; } + float dot(const vec2 &o) const { return x*o.x + y*o.y; } + float squaredlen() const { return dot(*this); } + float magnitude() const { return sqrtf(squaredlen()); } + vec2 &normalize() { mul(1/magnitude()); return *this; } + vec2 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } + float cross(const vec2 &o) const { return x*o.y - y*o.x; } + + vec2 &mul(float f) { x *= f; y *= f; return *this; } + vec2 &mul(const vec2 &o) { x *= o.x; y *= o.y; return *this; } + vec2 &square() { mul(*this); return *this; } + vec2 &div(float f) { x /= f; y /= f; return *this; } + vec2 &div(const vec2 &o) { x /= o.x; y /= o.y; return *this; } + vec2 &recip() { x = 1/x; y = 1/y; return *this; } + vec2 &add(float f) { x += f; y += f; return *this; } + vec2 &add(const vec2 &o) { x += o.x; y += o.y; return *this; } + vec2 &sub(float f) { x -= f; y -= f; return *this; } + vec2 &sub(const vec2 &o) { x -= o.x; y -= o.y; return *this; } + vec2 &neg() { x = -x; y = -y; return *this; } + vec2 &min(const vec2 &o) { x = ::min(x, o.x); y = ::min(y, o.y); return *this; } + vec2 &max(const vec2 &o) { x = ::max(x, o.x); y = ::max(y, o.y); return *this; } + vec2 &min(float f) { x = ::min(x, f); y = ::min(y, f); return *this; } + vec2 &max(float f) { x = ::max(x, f); y = ::max(y, f); return *this; } + vec2 &abs() { x = fabs(x); y = fabs(y); return *this; } + vec2 &clamp(float l, float h) { x = ::clamp(x, l, h); y = ::clamp(y, l, h); return *this; } + vec2 &reflect(const vec2 &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; return *this; } + vec2 &lerp(const vec2 &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; return *this; } + vec2 &lerp(const vec2 &a, const vec2 &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; return *this; } + template vec2 &madd(const vec2 &a, const B &b) { return add(vec2(a).mul(b)); } + template vec2 &msub(const vec2 &a, const B &b) { return sub(vec2(a).mul(b)); } +}; + +static inline bool htcmp(const vec2 &x, const vec2 &y) +{ + return x == y; +} + +static inline uint hthash(const vec2 &k) +{ + union { uint i; float f; } x, y; + x.f = k.x; y.f = k.y; + uint v = x.i^y.i; + return v + (v>>12); +} + +struct ivec; + +struct vec +{ + union + { + struct { float x, y, z; }; + struct { float r, g, b; }; + float v[3]; + }; + + vec() {} + explicit vec(int a) : x(a), y(a), z(a) {} + explicit vec(float a) : x(a), y(a), z(a) {} + vec(float a, float b, float c) : x(a), y(b), z(c) {} + explicit vec(int v[3]) : x(v[0]), y(v[1]), z(v[2]) {} + explicit vec(const float *v) : x(v[0]), y(v[1]), z(v[2]) {} + explicit vec(const vec2 &v, float z = 0) : x(v.x), y(v.y), z(z) {} + explicit vec(const vec4 &v); + explicit vec(const ivec &v); + + vec(float yaw, float pitch) : x(-sinf(yaw)*cosf(pitch)), y(cosf(yaw)*cosf(pitch)), z(sinf(pitch)) {} + + float &operator[](int i) { return v[i]; } + float operator[](int i) const { return v[i]; } + + vec &set(int i, float f) { v[i] = f; return *this; } + + bool operator==(const vec &o) const { return x == o.x && y == o.y && z == o.z; } + bool operator!=(const vec &o) const { return x != o.x || y != o.y || z != o.z; } + + bool iszero() const { return x==0 && y==0 && z==0; } + float squaredlen() const { return x*x + y*y + z*z; } + template float dot2(const T &o) const { return x*o.x + y*o.y; } + float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z; } + float absdot(const vec &o) const { return fabs(x*o.x) + fabs(y*o.y) + fabs(z*o.z); } + vec &pow(float f) { x = ::pow(x, f); y = ::pow(y, f); z = ::pow(z, f); return *this; } + vec &exp() { x = ::exp(x); y = ::exp(y); z = ::exp(z); return *this; } + vec &exp2() { x = ::exp2(x); y = ::exp2(y); z = ::exp2(z); return *this; } + vec &sqrt() { x = sqrtf(x); y = sqrtf(y); z = sqrtf(z); return *this; } + vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; } + vec &mul(float f) { x *= f; y *= f; z *= f; return *this; } + vec &square() { mul(*this); return *this; } + vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; } + vec &div(float f) { x /= f; y /= f; z /= f; return *this; } + vec &recip() { x = 1/x; y = 1/y; z = 1/z; return *this; } + vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; } + vec &add(float f) { x += f; y += f; z += f; return *this; } + vec &add2(float f) { x += f; y += f; return *this; } + vec &addz(float f) { z += f; return *this; } + vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; } + vec &sub(float f) { x -= f; y -= f; z -= f; return *this; } + vec &sub2(float f) { x -= f; y -= f; return *this; } + vec &subz(float f) { z -= f; return *this; } + vec &neg2() { x = -x; y = -y; return *this; } + vec &neg() { x = -x; y = -y; z = -z; return *this; } + vec &min(const vec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; } + vec &max(const vec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; } + vec &min(float f) { x = ::min(x, f); y = ::min(y, f); z = ::min(z, f); return *this; } + vec &max(float f) { x = ::max(x, f); y = ::max(y, f); z = ::max(z, f); return *this; } + vec &clamp(float f, float h) { x = ::clamp(x, f, h); y = ::clamp(y, f, h); z = ::clamp(z, f, h); return *this; } + vec &abs() { x = fabs(x); y = fabs(y); z = fabs(z); return *this; } + float magnitude2() const { return sqrtf(dot2(*this)); } + float magnitude() const { return sqrtf(squaredlen()); } + vec &normalize() { div(magnitude()); return *this; } + vec &safenormalize() { float m = magnitude(); if(m) div(m); return *this; } + bool isnormalized() const { float m = squaredlen(); return (m>0.99f && m<1.01f); } + float squaredist(const vec &e) const { return vec(*this).sub(e).squaredlen(); } + float dist(const vec &e) const { vec t; return dist(e, t); } + float dist(const vec &e, vec &t) const { t = *this; t.sub(e); return t.magnitude(); } + float dist2(const vec &o) const { float dx = x-o.x, dy = y-o.y; return sqrtf(dx*dx + dy*dy); } + bool reject(const vec &o, float r) { return x>o.x+r || xo.y+r || y + vec &cross(const A &a, const B &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } + vec &cross(const vec &o, const vec &a, const vec &b) { return cross(vec(a).sub(o), vec(b).sub(o)); } + float scalartriple(const vec &a, const vec &b) const { return x*(a.y*b.z-a.z*b.y) + y*(a.z*b.x-a.x*b.z) + z*(a.x*b.y-a.y*b.x); } + vec &reflectz(float rz) { z = 2*rz - z; return *this; } + vec &reflect(const vec &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } + vec &project(const vec &n) { float k = dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } + vec &projectxydir(const vec &n) { if(n.z) z = -(x*n.x/n.z + y*n.y/n.z); return *this; } + vec &projectxy(const vec &n) + { + float m = squaredlen(), k = dot(n); + projectxydir(n); + rescale(sqrtf(::max(m - k*k, 0.0f))); + return *this; + } + vec &projectxy(const vec &n, float threshold) + { + float m = squaredlen(), k = ::min(dot(n), threshold); + projectxydir(n); + rescale(sqrtf(::max(m - k*k, 0.0f))); + return *this; + } + vec &lerp(const vec &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; z += (b.z-z)*t; return *this; } + vec &lerp(const vec &a, const vec &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; z = a.z + (b.z-a.z)*t; return *this; } + template vec &madd(const vec &a, const B &b) { return add(vec(a).mul(b)); } + template vec &msub(const vec &a, const B &b) { return sub(vec(a).mul(b)); } + + vec &rescale(float k) + { + float mag = magnitude(); + if(mag > 1e-6f) mul(k / mag); + return *this; + } + + vec &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } + vec &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } + vec &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; } + + vec &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } + vec &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } + vec &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } + + vec &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); } + vec &rotate_around_x(const vec2 &sc) { return rotate_around_x(sc.x, sc.y); } + vec &rotate_around_y(const vec2 &sc) { return rotate_around_y(sc.x, sc.y); } + + vec &rotate(float c, float s, const vec &d) + { + *this = vec(x*(d.x*d.x*(1-c)+c) + y*(d.x*d.y*(1-c)-d.z*s) + z*(d.x*d.z*(1-c)+d.y*s), + x*(d.y*d.x*(1-c)+d.z*s) + y*(d.y*d.y*(1-c)+c) + z*(d.y*d.z*(1-c)-d.x*s), + x*(d.x*d.z*(1-c)-d.y*s) + y*(d.y*d.z*(1-c)+d.x*s) + z*(d.z*d.z*(1-c)+c)); + return *this; + } + vec &rotate(float angle, const vec &d) { return rotate(cosf(angle), sinf(angle), d); } + vec &rotate(const vec2 &sc, const vec &d) { return rotate(sc.x, sc.y, d); } + + void orthogonal(const vec &d) + { + *this = fabs(d.x) > fabs(d.z) ? vec(-d.y, d.x, 0) : vec(0, -d.z, d.y); + } + + void orthonormalize(vec &s, vec &t) const + { + s.sub(vec(*this).mul(dot(s))); + t.sub(vec(*this).mul(dot(t))) + .sub(vec(s).mul(s.dot(t))); + } + + template + bool insidebb(const T &bbmin, const T &bbmax) const + { + return x >= bbmin.x && x <= bbmax.x && y >= bbmin.y && y <= bbmax.y && z >= bbmin.z && z <= bbmax.z; + } + + template + bool insidebb(const T &o, U size) const + { + return x >= o.x && x <= o.x + size && y >= o.y && y <= o.y + size && z >= o.z && z <= o.z + size; + } + + template float dist_to_bb(const T &min, const T &max) const + { + float sqrdist = 0; + loopi(3) + { + if (v[i] < min[i]) { float delta = v[i]-min[i]; sqrdist += delta*delta; } + else if(v[i] > max[i]) { float delta = max[i]-v[i]; sqrdist += delta*delta; } + } + return sqrtf(sqrdist); + } + + template float dist_to_bb(const T &o, S size) const + { + return dist_to_bb(o, T(o).add(size)); + } + + static vec hexcolor(int color) + { + return vec(((color>>16)&0xFF)*(1.0f/255.0f), ((color>>8)&0xFF)*(1.0f/255.0f), (color&0xFF)*(1.0f/255.0f)); + } + int tohexcolor() const { return (int(::clamp(r, 0.0f, 1.0f)*255)<<16)|(int(::clamp(g, 0.0f, 1.0f)*255)<<8)|int(::clamp(b, 0.0f, 1.0f)*255); } +}; + +inline vec2::vec2(const vec &v) : x(v.x), y(v.y) {} + +static inline bool htcmp(const vec &x, const vec &y) +{ + return x == y; +} + +static inline uint hthash(const vec &k) +{ + union { uint i; float f; } x, y, z; + x.f = k.x; y.f = k.y; z.f = k.z; + uint v = x.i^y.i^z.i; + return v + (v>>12); +} + +struct vec4 +{ + union + { + struct { float x, y, z, w; }; + struct { float r, g, b, a; }; + float v[4]; + }; + + vec4() {} + explicit vec4(const vec &p, float w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} + vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} + explicit vec4(const float *v) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {} + + float &operator[](int i) { return v[i]; } + float operator[](int i) const { return v[i]; } + + template float dot3(const T &o) const { return x*o.x + y*o.y + z*o.z; } + float dot(const vec4 &o) const { return dot3(o) + w*o.w; } + float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; } + float squaredlen() const { return dot(*this); } + float magnitude() const { return sqrtf(squaredlen()); } + float magnitude3() const { return sqrtf(dot3(*this)); } + vec4 &normalize() { mul(1/magnitude()); return *this; } + vec4 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } + + vec4 &lerp(const vec4 &b, float t) + { + x += (b.x-x)*t; + y += (b.y-y)*t; + z += (b.z-z)*t; + w += (b.w-w)*t; + return *this; + } + vec4 &lerp(const vec4 &a, const vec4 &b, float t) + { + x = a.x+(b.x-a.x)*t; + y = a.y+(b.y-a.y)*t; + z = a.z+(b.z-a.z)*t; + w = a.w+(b.w-a.w)*t; + return *this; + } + + vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; } + vec4 &mul(float f) { mul3(f); w *= f; return *this; } + vec4 &mul(const vec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } + vec4 &square() { mul(*this); return *this; } + vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; } + vec4 &div(float f) { div3(f); w /= f; return *this; } + vec4 &div(const vec4 &o) { x /= o.x; y /= o.y; z /= o.z; w /= o.w; return *this; } + vec4 &recip() { x = 1/x; y = 1/y; z = 1/z; w = 1/w; return *this; } + vec4 &add(const vec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } + vec4 &addw(float f) { w += f; return *this; } + vec4 &sub(const vec4 &o) { x -= o.x; y -= o.y; z -= o.z; w -= o.w; return *this; } + vec4 &subw(float f) { w -= f; return *this; } + vec4 &neg3() { x = -x; y = -y; z = -z; return *this; } + vec4 &neg() { neg3(); w = -w; return *this; } + template vec4 &madd(const vec4 &a, const B &b) { return add(vec4(a).mul(b)); } + template vec4 &msub(const vec4 &a, const B &b) { return sub(vec4(a).mul(b)); } + + void setxyz(const vec &v) { x = v.x; y = v.y; z = v.z; } + + vec4 &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } + vec4 &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } + vec4 &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; } + + vec4 &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } + vec4 &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } + vec4 &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } +}; + +inline vec::vec(const vec4 &v) : x(v.x), y(v.y), z(v.z) {} + +struct matrix3; +struct matrix4x3; +struct matrix4; + +struct quat : vec4 +{ + quat() {} + quat(float x, float y, float z, float w) : vec4(x, y, z, w) {} + quat(const vec &axis, float angle) + { + w = cosf(angle/2); + float s = sinf(angle/2); + x = s*axis.x; + y = s*axis.y; + z = s*axis.z; + } + explicit quat(const vec &v) + { + x = v.x; + y = v.y; + z = v.z; + restorew(); + } + explicit quat(const matrix3 &m) { convertmatrix(m); } + explicit quat(const matrix4x3 &m) { convertmatrix(m); } + explicit quat(const matrix4 &m) { convertmatrix(m); } + + void restorew() { w = 1.0f-x*x-y*y-z*z; w = w<0 ? 0 : -sqrtf(w); } + + quat &add(const vec4 &o) { vec4::add(o); return *this; } + quat &sub(const vec4 &o) { vec4::sub(o); return *this; } + quat &mul(float k) { vec4::mul(k); return *this; } + + quat &mul(const quat &p, const quat &o) + { + x = p.w*o.x + p.x*o.w + p.y*o.z - p.z*o.y; + y = p.w*o.y - p.x*o.z + p.y*o.w + p.z*o.x; + z = p.w*o.z + p.x*o.y - p.y*o.x + p.z*o.w; + w = p.w*o.w - p.x*o.x - p.y*o.y - p.z*o.z; + return *this; + } + quat &mul(const quat &o) { return mul(quat(*this), o); } + + quat &invert() { neg3(); return *this; } + + void calcangleaxis(float &angle, vec &axis) + { + float rr = dot3(*this); + if(rr>0) + { + angle = 2*acosf(w); + axis = vec(x, y, z).mul(1/rr); + } + else { angle = 0; axis = vec(0, 0, 1); } + } + + vec rotate(const vec &v) const + { + return vec().cross(*this, vec().cross(*this, v).add(vec(v).mul(w))).mul(2).add(v); + } + + vec invertedrotate(const vec &v) const + { + return vec().cross(*this, vec().cross(*this, v).sub(vec(v).mul(w))).mul(2).add(v); + } + + template + void convertmatrix(const M &m) + { + float trace = m.a.x + m.b.y + m.c.z; + if(trace>0) + { + float r = sqrtf(1 + trace), inv = 0.5f/r; + w = 0.5f*r; + x = (m.b.z - m.c.y)*inv; + y = (m.c.x - m.a.z)*inv; + z = (m.a.y - m.b.x)*inv; + } + else if(m.a.x > m.b.y && m.a.x > m.c.z) + { + float r = sqrtf(1 + m.a.x - m.b.y - m.c.z), inv = 0.5f/r; + x = 0.5f*r; + y = (m.a.y + m.b.x)*inv; + z = (m.c.x + m.a.z)*inv; + w = (m.b.z - m.c.y)*inv; + } + else if(m.b.y > m.c.z) + { + float r = sqrtf(1 + m.b.y - m.a.x - m.c.z), inv = 0.5f/r; + x = (m.a.y + m.b.x)*inv; + y = 0.5f*r; + z = (m.b.z + m.c.y)*inv; + w = (m.c.x - m.a.z)*inv; + } + else + { + float r = sqrtf(1 + m.c.z - m.a.x - m.b.y), inv = 0.5f/r; + x = (m.c.x + m.a.z)*inv; + y = (m.b.z + m.c.y)*inv; + z = 0.5f*r; + w = (m.a.y - m.b.x)*inv; + } + } +}; + +struct dualquat +{ + quat real, dual; + + dualquat() {} + dualquat(const quat &q, const vec &p) + : real(q), + dual(0.5f*( p.x*q.w + p.y*q.z - p.z*q.y), + 0.5f*(-p.x*q.z + p.y*q.w + p.z*q.x), + 0.5f*( p.x*q.y - p.y*q.x + p.z*q.w), + -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z)) + { + } + explicit dualquat(const quat &q) : real(q), dual(0, 0, 0, 0) {} + explicit dualquat(const matrix4x3 &m); + + dualquat &mul(float k) { real.mul(k); dual.mul(k); return *this; } + dualquat &add(const dualquat &d) { real.add(d.real); dual.add(d.dual); return *this; } + + dualquat &lerp(const dualquat &to, float t) + { + float k = real.dot(to.real) < 0 ? -t : t; + real.mul(1-t).add(vec4(to.real).mul(k)); + dual.mul(1-t).add(vec4(to.dual).mul(k)); + return *this; + } + dualquat &lerp(const dualquat &from, const dualquat &to, float t) + { + float k = from.real.dot(to.real) < 0 ? -t : t; + (real = from.real).mul(1-t).add(vec4(to.real).mul(k)); + (dual = from.dual).mul(1-t).add(vec4(to.dual).mul(k)); + return *this; + } + + dualquat &invert() + { + real.invert(); + dual.invert(); + dual.sub(quat(real).mul(2*real.dot(dual))); + return *this; + } + + void mul(const dualquat &p, const dualquat &o) + { + real.mul(p.real, o.real); + dual.mul(p.real, o.dual).add(quat().mul(p.dual, o.real)); + } + void mul(const dualquat &o) { mul(dualquat(*this), o); } + + void mulorient(const quat &q) + { + real.mul(q, quat(real)); + dual.mul(quat(q).invert(), quat(dual)); + } + + void mulorient(const quat &q, const dualquat &base) + { + quat trans; + trans.mul(base.dual, quat(base.real).invert()); + dual.mul(quat(q).invert(), quat(real).mul(trans).add(dual)); + + real.mul(q, quat(real)); + dual.add(quat().mul(real, trans.invert())).sub(quat(real).mul(2*base.real.dot(base.dual))); + } + + void normalize() + { + float invlen = 1/real.magnitude(); + real.mul(invlen); + dual.mul(invlen); + } + + void translate(const vec &p) + { + dual.x += 0.5f*( p.x*real.w + p.y*real.z - p.z*real.y); + dual.y += 0.5f*(-p.x*real.z + p.y*real.w + p.z*real.x); + dual.z += 0.5f*( p.x*real.y - p.y*real.x + p.z*real.w); + dual.w += -0.5f*( p.x*real.x + p.y*real.y + p.z*real.z); + } + + void scale(float k) + { + dual.mul(k); + } + + void fixantipodal(const dualquat &d) + { + if(real.dot(d.real) < 0) + { + real.neg(); + dual.neg(); + } + } + + void accumulate(const dualquat &d, float k) + { + if(real.dot(d.real) < 0) k = -k; + real.add(vec4(d.real).mul(k)); + dual.add(vec4(d.dual).mul(k)); + } + + vec transform(const vec &v) const + { + return vec().cross(real, vec().cross(real, v).add(vec(v).mul(real.w)).add(vec(dual))).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2).add(v); + } + + quat transform(const quat &q) const + { + return quat().mul(real, q); + } + + vec transposedtransform(const vec &v) const + { + return dualquat(*this).invert().transform(v); + } + + vec transformnormal(const vec &v) const + { + return real.rotate(v); + } + + vec transposedtransformnormal(const vec &v) const + { + return real.invertedrotate(v); + } + + vec gettranslation() const + { + return vec().cross(real, dual).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2); + } +}; + +struct matrix3 +{ + vec a, b, c; + + matrix3() {} + matrix3(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} + explicit matrix3(float angle, const vec &axis) { rotate(angle, axis); } + explicit matrix3(const quat &q) + { + float x = q.x, y = q.y, z = q.z, w = q.w, + tx = 2*x, ty = 2*y, tz = 2*z, + txx = tx*x, tyy = ty*y, tzz = tz*z, + txy = tx*y, txz = tx*z, tyz = ty*z, + twx = w*tx, twy = w*ty, twz = w*tz; + a = vec(1 - (tyy + tzz), txy + twz, txz - twy); + b = vec(txy - twz, 1 - (txx + tzz), tyz + twx); + c = vec(txz + twy, tyz - twx, 1 - (txx + tyy)); + } + explicit matrix3(const matrix4x3 &m); + explicit matrix3(const matrix4 &m); + + void mul(const matrix3 &m, const matrix3 &n) + { + a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); + b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); + c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); + } + void mul(const matrix3 &n) { mul(matrix3(*this), n); } + + void multranspose(const matrix3 &m, const matrix3 &n) + { + a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); + b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); + c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); + } + void multranspose(const matrix3 &n) { multranspose(matrix3(*this), n); } + + void transposemul(const matrix3 &m, const matrix3 &n) + { + a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); + b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); + c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); + } + void transposemul(const matrix3 &n) { transposemul(matrix3(*this), n); } + + void transpose() + { + swap(a.y, b.x); swap(a.z, c.x); + swap(b.z, c.y); + } + + template + void transpose(const M &m) + { + a = vec(m.a.x, m.b.x, m.c.x); + b = vec(m.a.y, m.b.y, m.c.y); + c = vec(m.a.z, m.b.z, m.c.z); + } + + void invert(const matrix3 &o) + { + vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); + transpose(o); + a.mul(unscale); + b.mul(unscale); + c.mul(unscale); + } + void invert() { invert(matrix3(*this)); } + + void normalize() + { + a.normalize(); + b.normalize(); + c.normalize(); + } + + void scale(float k) + { + a.mul(k); + b.mul(k); + c.mul(k); + } + + void rotate(float angle, const vec &axis) + { + rotate(cosf(angle), sinf(angle), axis); + } + + void rotate(float ck, float sk, const vec &axis) + { + a = vec(axis.x*axis.x*(1-ck)+ck, axis.x*axis.y*(1-ck)+axis.z*sk, axis.x*axis.z*(1-ck)-axis.y*sk); + b = vec(axis.x*axis.y*(1-ck)-axis.z*sk, axis.y*axis.y*(1-ck)+ck, axis.y*axis.z*(1-ck)+axis.x*sk); + c = vec(axis.x*axis.z*(1-ck)+axis.y*sk, axis.y*axis.z*(1-ck)-axis.x*sk, axis.z*axis.z*(1-ck)+ck); + } + + void setyaw(float ck, float sk) + { + a = vec(ck, sk, 0); + b = vec(-sk, ck, 0); + c = vec(0, 0, 1); + } + + void setyaw(float angle) + { + setyaw(cosf(angle), sinf(angle)); + } + + float trace() const { return a.x + b.y + c.z; } + + bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const + { + if(tr <= -1) + { + if(a.x >= b.y && a.x >= c.z) + { + float r = 1 + a.x - b.y - c.z; + if(r <= threshold) return false; + r = sqrtf(r); + axis.x = 0.5f*r; + axis.y = b.x/r; + axis.z = c.x/r; + } + else if(b.y >= c.z) + { + float r = 1 + b.y - a.x - c.z; + if(r <= threshold) return false; + r = sqrtf(r); + axis.y = 0.5f*r; + axis.x = b.x/r; + axis.z = c.y/r; + } + else + { + float r = 1 + b.y - a.x - c.z; + if(r <= threshold) return false; + r = sqrtf(r); + axis.z = 0.5f*r; + axis.x = c.x/r; + axis.y = c.y/r; + } + angle = M_PI; + } + else if(tr >= 3) + { + axis = vec(0, 0, 1); + angle = 0; + } + else + { + axis = vec(b.z - c.y, c.x - a.z, a.y - b.x); + float r = axis.squaredlen(); + if(r <= threshold) return false; + axis.mul(1/sqrtf(r)); + angle = acosf(0.5f*(tr - 1)); + } + return true; + } + + bool calcangleaxis(float &angle, vec &axis, float threshold = 1e-16f) const { return calcangleaxis(trace(), angle, axis, threshold); } + + vec transform(const vec &o) const + { + return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); + } + vec transposedtransform(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } + vec abstransform(const vec &o) const + { + return vec(a).mul(o.x).abs().add(vec(b).mul(o.y).abs()).add(vec(c).mul(o.z).abs()); + } + vec abstransposedtransform(const vec &o) const + { + return vec(a.absdot(o), b.absdot(o), c.absdot(o)); + } + + void identity() + { + a = vec(1, 0, 0); + b = vec(0, 1, 0); + c = vec(0, 0, 1); + } + + void rotate_around_x(float ck, float sk) + { + vec rb = vec(b).mul(ck).madd(c, sk), + rc = vec(c).mul(ck).msub(b, sk); + b = rb; + c = rc; + } + void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } + void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } + + void rotate_around_y(float ck, float sk) + { + vec rc = vec(c).mul(ck).madd(a, sk), + ra = vec(a).mul(ck).msub(c, sk); + c = rc; + a = ra; + } + void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } + void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } + + void rotate_around_z(float ck, float sk) + { + vec ra = vec(a).mul(ck).madd(b, sk), + rb = vec(b).mul(ck).msub(a, sk); + a = ra; + b = rb; + } + void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } + void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } + + vec transform(const vec2 &o) { return vec(a).mul(o.x).madd(b, o.y); } + vec transposedtransform(const vec2 &o) const { return vec(a.dot2(o), b.dot2(o), c.dot2(o)); } + + vec rowx() const { return vec(a.x, b.x, c.x); } + vec rowy() const { return vec(a.y, b.y, c.y); } + vec rowz() const { return vec(a.z, b.z, c.z); } +}; + +struct matrix4x3 +{ + vec a, b, c, d; + + matrix4x3() {} + matrix4x3(const vec &a, const vec &b, const vec &c, const vec &d) : a(a), b(b), c(c), d(d) {} + matrix4x3(const matrix3 &rot, const vec &trans) : a(rot.a), b(rot.b), c(rot.c), d(trans) {} + matrix4x3(const dualquat &dq) + { + vec4 r = vec4(dq.real).mul(1/dq.real.squaredlen()), rr = vec4(r).mul(dq.real); + r.mul(2); + float xy = r.x*dq.real.y, xz = r.x*dq.real.z, yz = r.y*dq.real.z, + wx = r.w*dq.real.x, wy = r.w*dq.real.y, wz = r.w*dq.real.z; + a = vec(rr.w + rr.x - rr.y - rr.z, xy + wz, xz - wy); + b = vec(xy - wz, rr.w + rr.y - rr.x - rr.z, yz + wx); + c = vec(xz + wy, yz - wx, rr.w + rr.z - rr.x - rr.y); + d = vec(-(dq.dual.w*r.x - dq.dual.x*r.w + dq.dual.y*r.z - dq.dual.z*r.y), + -(dq.dual.w*r.y - dq.dual.x*r.z - dq.dual.y*r.w + dq.dual.z*r.x), + -(dq.dual.w*r.z + dq.dual.x*r.y - dq.dual.y*r.x - dq.dual.z*r.w)); + + } + explicit matrix4x3(const matrix4 &m); + + void mul(float k) + { + a.mul(k); + b.mul(k); + c.mul(k); + d.mul(k); + } + + void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } + void setscale(const vec &v) { setscale(v.x, v.y, v.z); } + void setscale(float n) { setscale(n, n, n); } + + void scale(float x, float y, float z) + { + a.mul(x); + b.mul(y); + c.mul(z); + } + void scale(const vec &v) { scale(v.x, v.y, v.z); } + void scale(float n) { scale(n, n, n); } + + void settranslation(const vec &p) { d = p; } + void settranslation(float x, float y, float z) { d = vec(x, y, z); } + + void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } + void translate(float x, float y, float z) { translate(vec(x, y, z)); } + void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } + + void posttranslate(const vec &p) { d.add(p); } + void posttranslate(float x, float y, float z) { posttranslate(vec(x, y, z)); } + void posttranslate(const vec &p, float scale) { d.madd(p, scale); } + + void accumulate(const matrix4x3 &m, float k) + { + a.madd(m.a, k); + b.madd(m.b, k); + c.madd(m.c, k); + d.madd(m.d, k); + } + + void normalize() + { + a.normalize(); + b.normalize(); + c.normalize(); + } + + void lerp(const matrix4x3 &to, float t) + { + a.lerp(to.a, t); + b.lerp(to.b, t); + c.lerp(to.c, t); + d.lerp(to.d, t); + } + void lerp(const matrix4x3 &from, const matrix4x3 &to, float t) + { + a.lerp(from.a, to.a, t); + b.lerp(from.b, to.b, t); + c.lerp(from.c, to.c, t); + d.lerp(from.d, to.d, t); + } + + void identity() + { + a = vec(1, 0, 0); + b = vec(0, 1, 0); + c = vec(0, 0, 1); + d = vec(0, 0, 0); + } + + void mul(const matrix4x3 &m, const matrix4x3 &n) + { + a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); + b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); + c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); + d = vec(m.d).madd(m.a, n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); + } + void mul(const matrix4x3 &n) { mul(matrix4x3(*this), n); } + + void mul(const matrix3 &m, const matrix4x3 &n) + { + a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); + b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); + c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); + d = vec(m.a).mul(n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); + } + + void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n) + { + mul(rot, n); + d.add(trans); + } + + void transpose() + { + d = vec(a.dot(d), b.dot(d), c.dot(d)).neg(); + swap(a.y, b.x); swap(a.z, c.x); + swap(b.z, c.y); + } + + void transpose(const matrix4x3 &o) + { + a = vec(o.a.x, o.b.x, o.c.x); + b = vec(o.a.y, o.b.y, o.c.y); + c = vec(o.a.z, o.b.z, o.c.z); + d = vec(o.a.dot(o.d), o.b.dot(o.d), o.c.dot(o.d)).neg(); + } + + void transposemul(const matrix4x3 &m, const matrix4x3 &n) + { + vec t(m.a.dot(m.d), m.b.dot(m.d), m.c.dot(m.d)); + a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); + b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); + c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); + d = vec(m.a.dot(n.d), m.b.dot(n.d), m.c.dot(n.d)).sub(t); + } + + void multranspose(const matrix4x3 &m, const matrix4x3 &n) + { + vec t(n.a.dot(n.d), n.b.dot(n.d), n.c.dot(n.d)); + a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); + b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); + c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); + d = vec(m.d).msub(m.a, t.x).msub(m.b, t.y).msub(m.c, t.z); + } + + void invert(const matrix4x3 &o) + { + vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); + transpose(o); + a.mul(unscale); + b.mul(unscale); + c.mul(unscale); + d.mul(unscale); + } + void invert() { invert(matrix4x3(*this)); } + + void rotate(float angle, const vec &d) + { + rotate(cosf(angle), sinf(angle), d); + } + + void rotate(float ck, float sk, const vec &axis) + { + matrix3 m; + m.rotate(ck, sk, axis); + *this = matrix4x3(m, vec(0, 0, 0)); + } + + void rotate_around_x(float ck, float sk) + { + vec rb = vec(b).mul(ck).madd(c, sk), + rc = vec(c).mul(ck).msub(b, sk); + b = rb; + c = rc; + } + void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } + void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } + + void rotate_around_y(float ck, float sk) + { + vec rc = vec(c).mul(ck).madd(a, sk), + ra = vec(a).mul(ck).msub(c, sk); + c = rc; + a = ra; + } + void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } + void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } + + void rotate_around_z(float ck, float sk) + { + vec ra = vec(a).mul(ck).madd(b, sk), + rb = vec(b).mul(ck).msub(a, sk); + a = ra; + b = rb; + } + void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } + void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } + + vec transform(const vec &o) const { return vec(d).madd(a, o.x).madd(b, o.y).madd(c, o.z); } + vec transposedtransform(const vec &o) const { vec p = vec(o).sub(d); return vec(a.dot(p), b.dot(p), c.dot(p)); } + vec transformnormal(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); } + vec transposedtransformnormal(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } + vec transform(const vec2 &o) const { return vec(d).madd(a, o.x).madd(b, o.y); } + + vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } + vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } + vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } +}; + +inline dualquat::dualquat(const matrix4x3 &m) : real(m) +{ + dual.x = 0.5f*( m.d.x*real.w + m.d.y*real.z - m.d.z*real.y); + dual.y = 0.5f*(-m.d.x*real.z + m.d.y*real.w + m.d.z*real.x); + dual.z = 0.5f*( m.d.x*real.y - m.d.y*real.x + m.d.z*real.w); + dual.w = -0.5f*( m.d.x*real.x + m.d.y*real.y + m.d.z*real.z); +} + +inline matrix3::matrix3(const matrix4x3 &m) : a(m.a), b(m.b), c(m.c) {} + +struct plane : vec +{ + float offset; + + float dist(const vec &p) const { return dot(p)+offset; } + float dist(const vec4 &p) const { return p.dot3(*this) + p.w*offset; } + bool operator==(const plane &p) const { return x==p.x && y==p.y && z==p.z && offset==p.offset; } + bool operator!=(const plane &p) const { return x!=p.x || y!=p.y || z!=p.z || offset!=p.offset; } + + plane() {} + plane(const vec &c, float off) : vec(c), offset(off) {} + plane(const vec4 &p) : vec(p), offset(p.w) {} + plane(int d, float off) + { + x = y = z = 0.0f; + v[d] = 1.0f; + offset = -off; + } + plane(float a, float b, float c, float d) : vec(a, b, c), offset(d) {} + + void toplane(const vec &n, const vec &p) + { + x = n.x; y = n.y; z = n.z; + offset = -dot(p); + } + + bool toplane(const vec &a, const vec &b, const vec &c) + { + cross(vec(b).sub(a), vec(c).sub(a)); + float mag = magnitude(); + if(!mag) return false; + div(mag); + offset = -dot(a); + return true; + } + + bool rayintersect(const vec &o, const vec &ray, float &dist) + { + float cosalpha = dot(ray); + if(cosalpha==0) return false; + float deltac = offset+dot(o); + dist -= deltac/cosalpha; + return true; + } + + plane &reflectz(float rz) + { + offset += 2*rz*z; + z = -z; + return *this; + } + + plane &invert() + { + neg(); + offset = -offset; + return *this; + } + + plane &scale(float k) + { + mul(k); + return *this; + } + + plane &translate(const vec &p) + { + offset += dot(p); + return *this; + } + + plane &normalize() + { + float mag = magnitude(); + div(mag); + offset /= mag; + return *this; + } + + float zintersect(const vec &p) const { return -(x*p.x+y*p.y+offset)/z; } + float zdelta(const vec &p) const { return -(x*p.x+y*p.y)/z; } + float zdist(const vec &p) const { return p.z-zintersect(p); } +}; + +struct triangle +{ + vec a, b, c; + + triangle(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} + triangle() {} + + triangle &add(const vec &o) { a.add(o); b.add(o); c.add(o); return *this; } + triangle &sub(const vec &o) { a.sub(o); b.sub(o); c.sub(o); return *this; } + + bool operator==(const triangle &t) const { return a == t.a && b == t.b && c == t.c; } +}; + +/** + +Sauerbraten uses 3 different linear coordinate systems +which are oriented around each of the axis dimensions. + +So any point within the game can be defined by four coordinates: (d, x, y, z) + +d is the reference axis dimension +x is the coordinate of the ROW dimension +y is the coordinate of the COL dimension +z is the coordinate of the reference dimension (DEPTH) + +typically, if d is not used, then it is implicitly the Z dimension. +ie: d=z => x=x, y=y, z=z + +**/ + +// DIM: X=0 Y=1 Z=2. +const int R[3] = {1, 2, 0}; // row +const int C[3] = {2, 0, 1}; // col +const int D[3] = {0, 1, 2}; // depth + +struct ivec4; +struct ivec2; +struct usvec; +struct svec; + +struct ivec +{ + union + { + struct { int x, y, z; }; + struct { int r, g, b; }; + int v[3]; + }; + + ivec() {} + explicit ivec(const vec &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)) {} + ivec(int a, int b, int c) : x(a), y(b), z(c) {} + ivec(int d, int row, int col, int depth) + { + v[R[d]] = row; + v[C[d]] = col; + v[D[d]] = depth; + } + ivec(int i, const ivec &co, int size) : x(co.x+((i&1)>>0)*size), y(co.y+((i&2)>>1)*size), z(co.z +((i&4)>>2)*size) {} + explicit ivec(const ivec4 &v); + explicit ivec(const ivec2 &v, int z = 0); + explicit ivec(const usvec &v); + explicit ivec(const svec &v); + + int &operator[](int i) { return v[i]; } + int operator[](int i) const { return v[i]; } + + //int idx(int i) { return v[i]; } + bool operator==(const ivec &v) const { return x==v.x && y==v.y && z==v.z; } + bool operator!=(const ivec &v) const { return x!=v.x || y!=v.y || z!=v.z; } + bool iszero() const { return x==0 && y==0 && z==0; } + ivec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; } + ivec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; } + ivec &mul(int n) { x *= n; y *= n; z *= n; return *this; } + ivec &div(int n) { x /= n; y /= n; z /= n; return *this; } + ivec &add(int n) { x += n; y += n; z += n; return *this; } + ivec &sub(int n) { x -= n; y -= n; z -= n; return *this; } + ivec &mul(const ivec &v) { x *= v.x; y *= v.y; z *= v.z; return *this; } + ivec &div(const ivec &v) { x /= v.x; y /= v.y; z /= v.z; return *this; } + ivec &add(const ivec &v) { x += v.x; y += v.y; z += v.z; return *this; } + ivec &sub(const ivec &v) { x -= v.x; y -= v.y; z -= v.z; return *this; } + ivec &mask(int n) { x &= n; y &= n; z &= n; return *this; } + ivec &neg() { return mul(-1); } + ivec &min(const ivec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; } + ivec &max(const ivec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; } + ivec &min(int n) { x = ::min(x, n); y = ::min(y, n); z = ::min(z, n); return *this; } + ivec &max(int n) { x = ::max(x, n); y = ::max(y, n); z = ::max(z, n); return *this; } + ivec &abs() { x = ::abs(x); y = ::abs(y); z = ::abs(z); return *this; } + ivec &clamp(int l, int h) { x = ::clamp(x, l, h); y = ::clamp(y, l, h); z = ::clamp(z, l, h); return *this; } + ivec &cross(const ivec &a, const ivec &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } + int dot(const ivec &o) const { return x*o.x + y*o.y + z*o.z; } + float dist(const plane &p) const { return x*p.x + y*p.y + z*p.z + p.offset; } + + static inline ivec floor(const vec &o) { return ivec(int(::floor(o.x)), int(::floor(o.y)), int(::floor(o.z))); } + static inline ivec ceil(const vec &o) { return ivec(int(::ceil(o.x)), int(::ceil(o.y)), int(::ceil(o.z))); } +}; + +inline vec::vec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} + +static inline bool htcmp(const ivec &x, const ivec &y) +{ + return x == y; +} + +static inline uint hthash(const ivec &k) +{ + return k.x^k.y^k.z; +} + +struct ivec2 +{ + union + { + struct { int x, y; }; + int v[2]; + }; + + ivec2() {} + ivec2(int x, int y) : x(x), y(y) {} + explicit ivec2(const vec2 &v) : x(int(v.x)), y(int(v.y)) {} + explicit ivec2(const ivec &v) : x(v.x), y(v.y) {} + + int &operator[](int i) { return v[i]; } + int operator[](int i) const { return v[i]; } + + bool operator==(const ivec2 &o) const { return x == o.x && y == o.y; } + bool operator!=(const ivec2 &o) const { return x != o.x || y != o.y; } + + bool iszero() const { return x==0 && y==0; } + ivec2 &shl(int n) { x<<= n; y<<= n; return *this; } + ivec2 &shr(int n) { x>>= n; y>>= n; return *this; } + ivec2 &mul(int n) { x *= n; y *= n; return *this; } + ivec2 &div(int n) { x /= n; y /= n; return *this; } + ivec2 &add(int n) { x += n; y += n; return *this; } + ivec2 &sub(int n) { x -= n; y -= n; return *this; } + ivec2 &mul(const ivec2 &v) { x *= v.x; y *= v.y; return *this; } + ivec2 &div(const ivec2 &v) { x /= v.x; y /= v.y; return *this; } + ivec2 &add(const ivec2 &v) { x += v.x; y += v.y; return *this; } + ivec2 &sub(const ivec2 &v) { x -= v.x; y -= v.y; return *this; } + ivec2 &mask(int n) { x &= n; y &= n; return *this; } + ivec2 &neg() { x = -x; y = -y; return *this; } + ivec2 &min(const ivec2 &o) { x = ::min(x, o.x); y = ::min(y, o.y); return *this; } + ivec2 &max(const ivec2 &o) { x = ::max(x, o.x); y = ::max(y, o.y); return *this; } + ivec2 &min(int n) { x = ::min(x, n); y = ::min(y, n); return *this; } + ivec2 &max(int n) { x = ::max(x, n); y = ::max(y, n); return *this; } + ivec2 &abs() { x = ::abs(x); y = ::abs(y); return *this; } + int dot(const ivec2 &o) const { return x*o.x + y*o.y; } + int cross(const ivec2 &o) const { return x*o.y - y*o.x; } +}; + +inline ivec::ivec(const ivec2 &v, int z) : x(v.x), y(v.y), z(z) {} + +static inline bool htcmp(const ivec2 &x, const ivec2 &y) +{ + return x == y; +} + +static inline uint hthash(const ivec2 &k) +{ + return k.x^k.y; +} + +struct ivec4 +{ + union + { + struct { int x, y, z, w; }; + struct { int r, g, b, a; }; + int v[4]; + }; + + ivec4() {} + explicit ivec4(const ivec &p, int w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} + ivec4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {} + explicit ivec4(const vec4 &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)), w(int(v.w)) {} + + bool operator==(const ivec4 &o) const { return x == o.x && y == o.y && z == o.z && w == o.w; } + bool operator!=(const ivec4 &o) const { return x != o.x || y != o.y || z != o.z || w != o.w; } +}; + +inline ivec::ivec(const ivec4 &v) : x(v.x), y(v.y), z(v.z) {} + +static inline bool htcmp(const ivec4 &x, const ivec4 &y) +{ + return x == y; +} + +static inline uint hthash(const ivec4 &k) +{ + return k.x^k.y^k.z^k.w; +} + +struct bvec4; + +struct bvec +{ + union + { + struct { uchar x, y, z; }; + struct { uchar r, g, b; }; + uchar v[3]; + }; + + bvec() {} + bvec(uchar x, uchar y, uchar z) : x(x), y(y), z(z) {} + explicit bvec(const vec &v) : x(uchar((v.x+1)*(255.0f/2.0f))), y(uchar((v.y+1)*(255.0f/2.0f))), z(uchar((v.z+1)*(255.0f/2.0f))) {} + explicit bvec(const bvec4 &v); + + uchar &operator[](int i) { return v[i]; } + uchar operator[](int i) const { return v[i]; } + + bool operator==(const bvec &v) const { return x==v.x && y==v.y && z==v.z; } + bool operator!=(const bvec &v) const { return x!=v.x || y!=v.y || z!=v.z; } + + bool iszero() const { return x==0 && y==0 && z==0; } + + vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } + + bvec &normalize() + { + vec n(x-127.5f, y-127.5f, z-127.5f); + float mag = 127.5f/n.magnitude(); + x = uchar(n.x*mag+127.5f); + y = uchar(n.y*mag+127.5f); + z = uchar(n.z*mag+127.5f); + return *this; + } + + void lerp(const bvec &a, const bvec &b, float t) { x = uchar(a.x + (b.x-a.x)*t); y = uchar(a.y + (b.y-a.y)*t); z = uchar(a.z + (b.z-a.z)*t); } + + void lerp(const bvec &a, const bvec &b, int ka, int kb, int d) + { + x = uchar((a.x*ka + b.x*kb)/d); + y = uchar((a.y*ka + b.y*kb)/d); + z = uchar((a.z*ka + b.z*kb)/d); + } + + void flip() { x ^= 0x80; y ^= 0x80; z ^= 0x80; } + + void scale(int k, int d) { x = uchar((x*k)/d); y = uchar((y*k)/d); z = uchar((z*k)/d); } + + bvec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; } + bvec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; } + + static bvec fromcolor(const vec &v) { return bvec(uchar(v.x*255.0f), uchar(v.y*255.0f), uchar(v.z*255.0f)); } + vec tocolor() const { return vec(x*(1.0f/255.0f), y*(1.0f/255.0f), z*(1.0f/255.0f)); } + + static bvec from565(ushort c) { return bvec((((c>>11)&0x1F)*527 + 15) >> 6, (((c>>5)&0x3F)*259 + 35) >> 6, ((c&0x1F)*527 + 15) >> 6); } + + static bvec hexcolor(int color) + { + return bvec((color>>16)&0xFF, (color>>8)&0xFF, color&0xFF); + } + int tohexcolor() const { return (int(r)<<16)|(int(g)<<8)|int(b); } +}; + +struct bvec4 +{ + union + { + struct { uchar x, y, z, w; }; + struct { uchar r, g, b, a; }; + uchar v[4]; + uint mask; + }; + + bvec4() {} + bvec4(uchar x, uchar y, uchar z, uchar w = 0) : x(x), y(y), z(z), w(w) {} + bvec4(const bvec &v, uchar w = 0) : x(v.x), y(v.y), z(v.z), w(w) {} + + uchar &operator[](int i) { return v[i]; } + uchar operator[](int i) const { return v[i]; } + + bool operator==(const bvec4 &v) const { return mask==v.mask; } + bool operator!=(const bvec4 &v) const { return mask!=v.mask; } + + bool iszero() const { return mask==0; } + + vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } + + void lerp(const bvec4 &a, const bvec4 &b, float t) + { + x = uchar(a.x + (b.x-a.x)*t); + y = uchar(a.y + (b.y-a.y)*t); + z = uchar(a.z + (b.z-a.z)*t); + w = a.w; + } + + void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d) + { + x = uchar((a.x*ka + b.x*kb)/d); + y = uchar((a.y*ka + b.y*kb)/d); + z = uchar((a.z*ka + b.z*kb)/d); + w = a.w; + } + + void flip() { mask ^= 0x80808080; } +}; + +inline bvec::bvec(const bvec4 &v) : x(v.x), y(v.y), z(v.z) {} + +struct usvec +{ + union + { + struct { ushort x, y, z; }; + ushort v[3]; + }; + + ushort &operator[](int i) { return v[i]; } + ushort operator[](int i) const { return v[i]; } +}; + +inline ivec::ivec(const usvec &v) : x(v.x), y(v.y), z(v.z) {} + +struct svec +{ + union + { + struct { short x, y, z; }; + short v[3]; + }; + + svec() {} + svec(short x, short y, short z) : x(x), y(y), z(z) {} + explicit svec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} + + short &operator[](int i) { return v[i]; } + short operator[](int i) const { return v[i]; } +}; + +inline ivec::ivec(const svec &v) : x(v.x), y(v.y), z(v.z) {} + +struct svec2 +{ + union + { + struct { short x, y; }; + short v[2]; + }; + + svec2() {} + svec2(short x, short y) : x(x), y(y) {} + + short &operator[](int i) { return v[i]; } + short operator[](int i) const { return v[i]; } + + bool operator==(const svec2 &o) const { return x == o.x && y == o.y; } + bool operator!=(const svec2 &o) const { return x != o.x || y != o.y; } + + bool iszero() const { return x==0 && y==0; } +}; + +struct dvec4 +{ + double x, y, z, w; + + dvec4() {} + dvec4(double x, double y, double z, double w) : x(x), y(y), z(z), w(w) {} + dvec4(const vec4 &v) : x(v.x), y(v.y), z(v.z), w(v.w) {} + + template dvec4 &madd(const dvec4 &a, const B &b) { return add(dvec4(a).mul(b)); } + dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; } + dvec4 &mul(const dvec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } + dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; } + dvec4 &add(const dvec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } + + operator vec4() const { return vec4(x, y, z, w); } +}; + +struct matrix4 +{ + vec4 a, b, c, d; + + matrix4() {} + matrix4(const float *m) : a(m), b(m+4), c(m+8), d(m+12) {} + matrix4(const vec &a, const vec &b, const vec &c = vec(0, 0, 1)) + : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1) + {} + matrix4(const vec4 &a, const vec4 &b, const vec4 &c, const vec4 &d = vec4(0, 0, 0, 1)) + : a(a), b(b), c(c), d(d) + {} + matrix4(const matrix4x3 &m) + : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1) + {} + matrix4(const matrix3 &rot, const vec &trans) + : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1) + {} + + void mul(const matrix4 &x, const matrix3 &y) + { + a = vec4(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z); + b = vec4(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z); + c = vec4(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z); + d = x.d; + } + void mul(const matrix3 &y) { mul(matrix4(*this), y); } + + template void mult(const matrix4 &x, const matrix4 &y) + { + a = T(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z).madd(x.d, y.a.w); + b = T(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z).madd(x.d, y.b.w); + c = T(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z).madd(x.d, y.c.w); + d = T(x.a).mul(y.d.x).madd(x.b, y.d.y).madd(x.c, y.d.z).madd(x.d, y.d.w); + } + + void mul(const matrix4 &x, const matrix4 &y) { mult(x, y); } + void mul(const matrix4 &y) { mult(matrix4(*this), y); } + + void muld(const matrix4 &x, const matrix4 &y) { mult(x, y); } + void muld(const matrix4 &y) { mult(matrix4(*this), y); } + + void rotate_around_x(float ck, float sk) + { + vec4 rb = vec4(b).mul(ck).madd(c, sk), + rc = vec4(c).mul(ck).msub(b, sk); + b = rb; + c = rc; + } + void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } + void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } + + void rotate_around_y(float ck, float sk) + { + vec4 rc = vec4(c).mul(ck).madd(a, sk), + ra = vec4(a).mul(ck).msub(c, sk); + c = rc; + a = ra; + } + void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } + void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } + + void rotate_around_z(float ck, float sk) + { + vec4 ra = vec4(a).mul(ck).madd(b, sk), + rb = vec4(b).mul(ck).msub(a, sk); + a = ra; + b = rb; + } + void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } + void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } + + void rotate(float ck, float sk, const vec &axis) + { + matrix3 m; + m.rotate(ck, sk, axis); + mul(m); + } + void rotate(float angle, const vec &dir) { rotate(cosf(angle), sinf(angle), dir); } + void rotate(const vec2 &sc, const vec &dir) { rotate(sc.x, sc.y, dir); } + + void identity() + { + a = vec4(1, 0, 0, 0); + b = vec4(0, 1, 0, 0); + c = vec4(0, 0, 1, 0); + d = vec4(0, 0, 0, 1); + } + + void settranslation(const vec &v) { d.setxyz(v); } + void settranslation(float x, float y, float z) { d.x = x; d.y = y; d.z = z; } + + void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } + void translate(float x, float y, float z) { translate(vec(x, y, z)); } + void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } + + void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } + void setscale(const vec &v) { setscale(v.x, v.y, v.z); } + void setscale(float n) { setscale(n, n, n); } + + void scale(float x, float y, float z) + { + a.mul(x); + b.mul(y); + c.mul(z); + } + void scale(const vec &v) { scale(v.x, v.y, v.z); } + void scale(float n) { scale(n, n, n); } + + void scalexy(float x, float y) + { + a.x *= x; a.y *= y; + b.x *= x; b.y *= y; + c.x *= x; c.y *= y; + d.x *= x; d.y *= y; + } + + void scalez(float k) + { + a.z *= k; + b.z *= k; + c.z *= k; + d.z *= k; + } + + void reflectz(float z) + { + d.add(vec4(c).mul(2*z)); + c.neg(); + } + + void projective(float zscale = 0.5f, float zoffset = 0.5f) + { + a.x = 0.5f*(a.x + a.w); + a.y = 0.5f*(a.y + a.w); + b.x = 0.5f*(b.x + b.w); + b.y = 0.5f*(b.y + b.w); + c.x = 0.5f*(c.x + c.w); + c.y = 0.5f*(c.y + c.w); + d.x = 0.5f*(d.x + d.w); + d.y = 0.5f*(d.y + d.w); + a.z = zscale*a.z + zoffset*a.w; + b.z = zscale*b.z + zoffset*b.w; + c.z = zscale*c.z + zoffset*c.w; + d.z = zscale*d.z + zoffset*d.w; + } + + void jitter(float x, float y) + { + a.x += x * a.w; + a.y += y * a.w; + b.x += x * b.w; + b.y += y * b.w; + c.x += x * c.w; + c.y += y * c.w; + d.x += x * d.w; + d.y += y * d.w; + } + + void transpose() + { + swap(a.y, b.x); swap(a.z, c.x); swap(a.w, d.x); + swap(b.z, c.y); swap(b.w, d.y); + swap(c.w, d.z); + } + + void transpose(const matrix4 &m) + { + a = vec4(m.a.x, m.b.x, m.c.x, m.d.x); + b = vec4(m.a.y, m.b.y, m.c.y, m.d.y); + c = vec4(m.a.z, m.b.z, m.c.z, m.d.z); + d = vec4(m.a.w, m.b.w, m.c.w, m.d.w); + } + + void frustum(float left, float right, float bottom, float top, float znear, float zfar) + { + float width = right - left, height = top - bottom, zrange = znear - zfar; + a = vec4(2*znear/width, 0, 0, 0); + b = vec4(0, 2*znear/height, 0, 0); + c = vec4((right + left)/width, (top + bottom)/height, (zfar + znear)/zrange, -1); + d = vec4(0, 0, 2*znear*zfar/zrange, 0); + } + + void perspective(float fovy, float aspect, float znear, float zfar) + { + float ydist = znear * tan(fovy/2*RAD), xdist = ydist * aspect; + frustum(-xdist, xdist, -ydist, ydist, znear, zfar); + } + + void ortho(float left, float right, float bottom, float top, float znear, float zfar) + { + float width = right - left, height = top - bottom, zrange = znear - zfar; + a = vec4(2/width, 0, 0, 0); + b = vec4(0, 2/height, 0, 0); + c = vec4(0, 0, 2/zrange, 0); + d = vec4(-(right+left)/width, -(top+bottom)/height, (zfar+znear)/zrange, 1); + } + + void clip(const plane &p, const matrix4 &m) + { + float x = ((p.x<0 ? -1 : (p.x>0 ? 1 : 0)) + m.c.x) / m.a.x, + y = ((p.y<0 ? -1 : (p.y>0 ? 1 : 0)) + m.c.y) / m.b.y, + w = (1 + m.c.z) / m.d.z, + scale = 2 / (x*p.x + y*p.y - p.z + w*p.offset); + a = vec4(m.a.x, m.a.y, p.x*scale, m.a.w); + b = vec4(m.b.x, m.b.y, p.y*scale, m.b.w); + c = vec4(m.c.x, m.c.y, p.z*scale + 1.0f, m.c.w); + d = vec4(m.d.x, m.d.y, p.offset*scale, m.d.w); + } + + void transform(const vec &in, vec &out) const + { + out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d)); + } + + void transform(const vec4 &in, vec &out) const + { + out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d).mul(in.w)); + } + + void transform(const vec &in, vec4 &out) const + { + out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).add(d); + } + + void transform(const vec4 &in, vec4 &out) const + { + out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).madd(d, in.w); + } + + template T transform(const U &in) const + { + T v; + transform(in, v); + return v; + } + + template vec perspectivetransform(const T &in) const + { + vec4 v; + transform(in, v); + return vec(v).div(v.w); + } + + void transformnormal(const vec &in, vec &out) const + { + out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)); + } + + void transformnormal(const vec &in, vec4 &out) const + { + out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z); + } + + template T transformnormal(const U &in) const + { + T v; + transformnormal(in, v); + return v; + } + + void transposedtransform(const vec &in, vec &out) const + { + vec p = vec(in).sub(vec(d)); + out.x = a.dot3(p); + out.y = b.dot3(p); + out.z = c.dot3(p); + } + + void transposedtransformnormal(const vec &in, vec &out) const + { + out.x = a.dot3(in); + out.y = b.dot3(in); + out.z = c.dot3(in); + } + + void transposedtransform(const plane &in, plane &out) const + { + out.x = in.dist(a); + out.y = in.dist(b); + out.z = in.dist(c); + out.offset = in.dist(d); + } + + float getscale() const + { + return sqrtf(a.x*a.y + b.x*b.x + c.x*c.x); + } + + vec gettranslation() const + { + return vec(d); + } + + vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } + vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } + vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } + vec4 roww() const { return vec4(a.w, b.w, c.w, d.w); } + + bool invert(const matrix4 &m, double mindet = 1.0e-12); + + vec2 lineardepthscale() const + { + return vec2(d.w, -d.z).div(c.z*d.w - d.z*c.w); + } +}; + +inline matrix3::matrix3(const matrix4 &m) + : a(m.a), b(m.b), c(m.c) +{} + +inline matrix4x3::matrix4x3(const matrix4 &m) + : a(m.a), b(m.b), c(m.c), d(m.d) +{} + +struct matrix2 +{ + vec2 a, b; + + matrix2() {} + matrix2(const vec2 &a, const vec2 &b) : a(a), b(b) {} + explicit matrix2(const matrix4 &m) : a(m.a), b(m.b) {} + explicit matrix2(const matrix3 &m) : a(m.a), b(m.b) {} +}; + +struct squat +{ + short x, y, z, w; + + squat() {} + squat(const vec4 &q) { convert(q); } + + void convert(const vec4 &q) + { + x = short(q.x*32767.5f-0.5f); + y = short(q.y*32767.5f-0.5f); + z = short(q.z*32767.5f-0.5f); + w = short(q.w*32767.5f-0.5f); + } + + void lerp(const vec4 &a, const vec4 &b, float t) + { + vec4 q; + q.lerp(a, b, t); + convert(q); + } +}; + +extern bool raysphereintersect(const vec ¢er, float radius, const vec &o, const vec &ray, float &dist); +extern bool rayboxintersect(const vec &b, const vec &s, const vec &o, const vec &ray, float &dist, int &orient); +extern bool linecylinderintersect(const vec &from, const vec &to, const vec &start, const vec &end, float radius, float &dist); + +extern const vec2 sincos360[]; +static inline int mod360(int angle) +{ + if(angle < 0) angle = 360 + (angle <= -360 ? angle%360 : angle); + else if(angle >= 360) angle %= 360; + return angle; +} +static inline const vec2 &sincosmod360(int angle) { return sincos360[mod360(angle)]; } +static inline float cos360(int angle) { return sincos360[angle].x; } +static inline float sin360(int angle) { return sincos360[angle].y; } +static inline float tan360(int angle) { const vec2 &sc = sincos360[angle]; return sc.y/sc.x; } +static inline float cotan360(int angle) { const vec2 &sc = sincos360[angle]; return sc.x/sc.y; } + -- cgit v1.2.3