#include "engine.h" struct normalgroup { vec pos; int flat, normals, tnormals; normalgroup() : flat(0), normals(-1), tnormals(-1) {} normalgroup(const vec &pos) : pos(pos), flat(0), normals(-1), tnormals(-1) {} }; static inline bool htcmp(const vec &v, const normalgroup &n) { return v == n.pos; } struct normal { int next; vec surface; }; struct tnormal { int next; float offset; int normals[2]; normalgroup *groups[2]; }; hashset normalgroups(1<<16); vector normals; vector tnormals; VARR(lerpangle, 0, 44, 180); static float lerpthreshold = 0; static bool usetnormals = true; static int addnormal(const vec &key, const vec &surface) { normalgroup &g = normalgroups.access(key, key); normal &n = normals.add(); n.next = g.normals; n.surface = surface; return g.normals = normals.length()-1; } static void addtnormal(const vec &key, float offset, int normal1, int normal2, normalgroup *group1, normalgroup *group2) { normalgroup &g = normalgroups.access(key, key); tnormal &n = tnormals.add(); n.next = g.tnormals; n.offset = offset; n.normals[0] = normal1; n.normals[1] = normal2; n.groups[0] = group1; n.groups[1] = group2; g.tnormals = tnormals.length()-1; } static int addnormal(const vec &key, int axis) { normalgroup &g = normalgroups.access(key, key); g.flat += 1<<(4*axis); return axis - 6; } static inline void findnormal(const normalgroup &g, const vec &surface, vec &v) { v = vec(0, 0, 0); int total = 0; if(surface.x >= lerpthreshold) { int n = (g.flat>>4)&0xF; v.x += n; total += n; } else if(surface.x <= -lerpthreshold) { int n = g.flat&0xF; v.x -= n; total += n; } if(surface.y >= lerpthreshold) { int n = (g.flat>>12)&0xF; v.y += n; total += n; } else if(surface.y <= -lerpthreshold) { int n = (g.flat>>8)&0xF; v.y -= n; total += n; } if(surface.z >= lerpthreshold) { int n = (g.flat>>20)&0xF; v.z += n; total += n; } else if(surface.z <= -lerpthreshold) { int n = (g.flat>>16)&0xF; v.z -= n; total += n; } for(int cur = g.normals; cur >= 0;) { normal &o = normals[cur]; if(o.surface.dot(surface) >= lerpthreshold) { v.add(o.surface); total++; } cur = o.next; } if(total > 1) v.normalize(); else if(!total) v = surface; } static inline bool findtnormal(const normalgroup &g, const vec &surface, vec &v) { float bestangle = lerpthreshold; tnormal *bestnorm = NULL; for(int cur = g.tnormals; cur >= 0;) { tnormal &o = tnormals[cur]; static const vec flats[6] = { vec(-1, 0, 0), vec(1, 0, 0), vec(0, -1, 0), vec(0, 1, 0), vec(0, 0, -1), vec(0, 0, 1) }; vec n1 = o.normals[0] < 0 ? flats[o.normals[0]+6] : normals[o.normals[0]].surface, n2 = o.normals[1] < 0 ? flats[o.normals[1]+6] : normals[o.normals[1]].surface, nt; nt.lerp(n1, n2, o.offset).normalize(); float tangle = nt.dot(surface); if(tangle >= bestangle) { bestangle = tangle; bestnorm = &o; } cur = o.next; } if(!bestnorm) return false; vec n1, n2; findnormal(*bestnorm->groups[0], surface, n1); findnormal(*bestnorm->groups[1], surface, n2); v.lerp(n1, n2, bestnorm->offset).normalize(); return true; } void findnormal(const vec &key, const vec &surface, vec &v) { const normalgroup *g = normalgroups.access(key); if(!g) v = surface; else if(g->tnormals < 0 || !findtnormal(*g, surface, v)) findnormal(*g, surface, v); } VARR(lerpsubdiv, 0, 2, 4); VARR(lerpsubdivsize, 4, 4, 128); static uint progress = 0; void show_addnormals_progress() { float bar1 = float(progress) / float(allocnodes); renderprogress(bar1, "computing normals..."); } void addnormals(cube &c, const ivec &o, int size) { CHECK_CALCLIGHT_PROGRESS(return, show_addnormals_progress); if(c.children) { progress++; size >>= 1; loopi(8) addnormals(c.children[i], ivec(i, o, size), size); return; } else if(isempty(c)) return; vec pos[MAXFACEVERTS]; int norms[MAXFACEVERTS]; int tj = usetnormals && c.ext ? c.ext->tjoints : -1, vis; loopi(6) if((vis = visibletris(c, i, o, size))) { CHECK_CALCLIGHT_PROGRESS(return, show_addnormals_progress); vec planes[2]; int numverts = c.ext ? c.ext->surfaces[i].numverts&MAXFACEVERTS : 0, convex = 0, numplanes = 0; if(numverts) { vertinfo *verts = c.ext->verts() + c.ext->surfaces[i].verts; vec vo(ivec(o).mask(~0xFFF)); loopj(numverts) { vertinfo &v = verts[j]; pos[j] = vec(v.x, v.y, v.z).mul(1.0f/8).add(vo); } if(!(c.merged&(1<= 0 && tjoints[tj].edge < i*(MAXFACEVERTS+1)) tj = tjoints[tj].next; while(tj >= 0 && tjoints[tj].edge < (i+1)*(MAXFACEVERTS+1)) { int edge = tjoints[tj].edge, e1 = edge%(MAXFACEVERTS+1), e2 = (e1+1)%numverts; const vec &v1 = pos[e1], &v2 = pos[e2]; ivec d(vec(v2).sub(v1).mul(8)); int axis = abs(d.x) > abs(d.y) ? (abs(d.x) > abs(d.z) ? 0 : 2) : (abs(d.y) > abs(d.z) ? 1 : 2); if(d[axis] < 0) d.neg(); reduceslope(d); int origin = int(min(v1[axis], v2[axis])*8)&~0x7FFF, offset1 = (int(v1[axis]*8) - origin) / d[axis], offset2 = (int(v2[axis]*8) - origin) / d[axis]; vec o = vec(v1).sub(vec(d).mul(offset1/8.0f)), n1, n2; float doffset = 1.0f / (offset2 - offset1); while(tj >= 0) { tjoint &t = tjoints[tj]; if(t.edge != edge) break; float offset = (t.offset - offset1) * doffset; vec tpos = vec(d).mul(t.offset/8.0f).add(o); addtnormal(tpos, offset, norms[e1], norms[e2], normalgroups.access(v1), normalgroups.access(v2)); tj = t.next; } } } } void calcnormals(bool lerptjoints) { if(!lerpangle) return; usetnormals = lerptjoints; if(usetnormals) findtjoints(); lerpthreshold = cos(lerpangle*RAD) - 1e-5f; progress = 1; loopi(8) addnormals(worldroot[i], ivec(i, ivec(0, 0, 0), worldsize/2), worldsize/2); } void clearnormals() { normalgroups.clear(); normals.setsize(0); tnormals.setsize(0); } void calclerpverts(const vec2 *c, const vec *n, lerpvert *lv, int &numv) { int i = 0; loopj(numv) { if(j) { if(c[j] == c[j-1] && n[j] == n[j-1]) continue; if(j == numv-1 && c[j] == c[0] && n[j] == n[0]) continue; } lv[i].normal = n[j]; lv[i].tc = c[j]; i++; } numv = i; } void setlerpstep(float v, lerpbounds &bounds) { if(bounds.min->tc.y + 1 > bounds.max->tc.y) { bounds.nstep = vec(0, 0, 0); bounds.normal = bounds.min->normal; if(bounds.min->normal != bounds.max->normal) { bounds.normal.add(bounds.max->normal); bounds.normal.normalize(); } bounds.ustep = 0; bounds.u = bounds.min->tc.x; return; } bounds.nstep = bounds.max->normal; bounds.nstep.sub(bounds.min->normal); bounds.nstep.div(bounds.max->tc.y-bounds.min->tc.y); bounds.normal = bounds.nstep; bounds.normal.mul(v - bounds.min->tc.y); bounds.normal.add(bounds.min->normal); bounds.ustep = (bounds.max->tc.x-bounds.min->tc.x) / (bounds.max->tc.y-bounds.min->tc.y); bounds.u = bounds.ustep * (v-bounds.min->tc.y) + bounds.min->tc.x; } void initlerpbounds(float u, float v, const lerpvert *lv, int numv, lerpbounds &start, lerpbounds &end) { (void) u; const lerpvert *first = &lv[0], *second = NULL; loopi(numv-1) { if(lv[i+1].tc.y < first->tc.y) { second = first; first = &lv[i+1]; } else if(!second || lv[i+1].tc.y < second->tc.y) second = &lv[i+1]; } if(int(first->tc.y) < int(second->tc.y)) { start.min = end.min = first; } else if(first->tc.x > second->tc.x) { start.min = second; end.min = first; } else { start.min = first; end.min = second; } if((lv[1].tc.x - lv->tc.x)*(lv[2].tc.y - lv->tc.y) > (lv[1].tc.y - lv->tc.y)*(lv[2].tc.x - lv->tc.x)) { start.winding = end.winding = 1; start.max = (start.min == lv ? &lv[numv-1] : start.min-1); end.max = (end.min == &lv[numv-1] ? lv : end.min+1); } else { start.winding = end.winding = -1; start.max = (start.min == &lv[numv-1] ? lv : start.min+1); end.max = (end.min == lv ? &lv[numv-1] : end.min-1); } setlerpstep(v, start); setlerpstep(v, end); } void updatelerpbounds(float v, const lerpvert *lv, int numv, lerpbounds &start, lerpbounds &end) { if(v >= start.max->tc.y) { const lerpvert *next = start.winding > 0 ? (start.max == lv ? &lv[numv-1] : start.max-1) : (start.max == &lv[numv-1] ? lv : start.max+1); if(next->tc.y > start.max->tc.y) { start.min = start.max; start.max = next; setlerpstep(v, start); } } if(v >= end.max->tc.y) { const lerpvert *next = end.winding > 0 ? (end.max == &lv[numv-1] ? lv : end.max+1) : (end.max == lv ? &lv[numv-1] : end.max-1); if(next->tc.y > end.max->tc.y) { end.min = end.max; end.max = next; setlerpstep(v, end); } } } void lerpnormal(float u, float v, const lerpvert *lv, int numv, lerpbounds &start, lerpbounds &end, vec &normal, vec &nstep) { updatelerpbounds(v, lv, numv, start, end); if(start.u + 1 > end.u) { nstep = vec(0, 0, 0); normal = start.normal; normal.add(end.normal); normal.normalize(); } else { vec nstart(start.normal), nend(end.normal); nstart.normalize(); nend.normalize(); nstep = nend; nstep.sub(nstart); nstep.div(end.u-start.u); normal = nstep; normal.mul(u-start.u); normal.add(nstart); normal.normalize(); } start.normal.add(start.nstep); start.u += start.ustep; end.normal.add(end.nstep); end.u += end.ustep; }