diff options
| author | xolatile | 2025-07-16 23:07:43 +0200 |
|---|---|---|
| committer | xolatile | 2025-07-16 23:07:43 +0200 |
| commit | 7256502afa0babe60fcafbd2888cd3e33c3f9b6b (patch) | |
| tree | 8a8495662a69bdadc4b5d9152656b9f02a44d668 /src/engine/mpr.h | |
| parent | bc596ac9d4cdd00abf537b88d3c544be161330cc (diff) | |
| download | xolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.xz xolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.zst | |
Source code, broken...
Diffstat (limited to 'src/engine/mpr.h')
| -rw-r--r-- | src/engine/mpr.h | 575 |
1 files changed, 575 insertions, 0 deletions
diff --git a/src/engine/mpr.h b/src/engine/mpr.h new file mode 100644 index 0000000..b4cfb59 --- /dev/null +++ b/src/engine/mpr.h @@ -0,0 +1,575 @@ +// This code is based off the Minkowski Portal Refinement algorithm by Gary Snethen in XenoCollide & Game Programming Gems 7. + +namespace mpr +{ + struct CubePlanes + { + const clipplanes &p; + + CubePlanes(const clipplanes &p) : p(p) {} + + vec center() const { return p.o; } + + vec supportpoint(const vec &n) const + { + int besti = 7; + float bestd = n.dot(p.v[7]); + loopi(7) + { + float d = n.dot(p.v[i]); + if(d > bestd) { besti = i; bestd = d; } + } + return p.v[besti]; + } + }; + + struct SolidCube + { + vec o; + int size; + + SolidCube(float x, float y, float z, int size) : o(x, y, z), size(size) {} + SolidCube(const vec &o, int size) : o(o), size(size) {} + SolidCube(const ivec &o, int size) : o(o), size(size) {} + + vec center() const { return vec(o).add(size/2); } + + vec supportpoint(const vec &n) const + { + vec p(o); + if(n.x > 0) p.x += size; + if(n.y > 0) p.y += size; + if(n.z > 0) p.z += size; + return p; + } + }; + + struct Ent + { + physent *ent; + + Ent(physent *ent) : ent(ent) {} + + vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight)/2); } + }; + + struct EntOBB : Ent + { + matrix3 orient; + float zmargin; + + EntOBB(physent *ent, float zmargin = 0) : Ent(ent), zmargin(zmargin) + { + orient.setyaw(ent->yaw*RAD); + } + + vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight - zmargin)/2); } + + vec contactface(const vec &wn, const vec &wdir) const + { + vec n = orient.transform(wn).div(vec(ent->xradius, ent->yradius, (ent->aboveeye + ent->eyeheight + zmargin)/2)), + dir = orient.transform(wdir), + an(fabs(n.x), fabs(n.y), dir.z ? fabs(n.z) : 0), + fn(0, 0, 0); + if(an.x > an.y) + { + if(an.x > an.z) fn.x = n.x*dir.x < 0 ? (n.x > 0 ? 1 : -1) : 0; + else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + } + else if(an.y > an.z) fn.y = n.y*dir.y < 0 ? (n.y > 0 ? 1 : -1) : 0; + else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + return orient.transposedtransform(fn); + } + + vec localsupportpoint(const vec &ln) const + { + return vec(ln.x > 0 ? ent->xradius : -ent->xradius, + ln.y > 0 ? ent->yradius : -ent->yradius, + ln.z > 0 ? ent->aboveeye : -ent->eyeheight - zmargin); + } + + vec supportpoint(const vec &n) const + { + return orient.transposedtransform(localsupportpoint(orient.transform(n))).add(ent->o); + } + + float supportcoordneg(float a, float b, float c) const + { + return localsupportpoint(vec(-a, -b, -c)).dot(vec(a, b, c)); + } + float supportcoord(float a, float b, float c) const + { + return localsupportpoint(vec(a, b, c)).dot(vec(a, b, c)); + } + + float left() const { return supportcoordneg(orient.a.x, orient.b.x, orient.c.x) + ent->o.x; } + float right() const { return supportcoord(orient.a.x, orient.b.x, orient.c.x) + ent->o.x; } + float back() const { return supportcoordneg(orient.a.y, orient.b.y, orient.c.y) + ent->o.y; } + float front() const { return supportcoord(orient.a.y, orient.b.y, orient.c.y) + ent->o.y; } + float bottom() const { return ent->o.z - ent->eyeheight - zmargin; } + float top() const { return ent->o.z + ent->aboveeye; } + }; + + struct EntFuzzy : Ent + { + EntFuzzy(physent *ent) : Ent(ent) {} + + float left() const { return ent->o.x - ent->radius; } + float right() const { return ent->o.x + ent->radius; } + float back() const { return ent->o.y - ent->radius; } + float front() const { return ent->o.y + ent->radius; } + float bottom() const { return ent->o.z - ent->eyeheight; } + float top() const { return ent->o.z + ent->aboveeye; } + }; + + struct EntCylinder : EntFuzzy + { + float zmargin; + + EntCylinder(physent *ent, float zmargin = 0) : EntFuzzy(ent), zmargin(zmargin) {} + + vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight - zmargin)/2); } + + float bottom() const { return ent->o.z - ent->eyeheight - zmargin; } + + vec contactface(const vec &n, const vec &dir) const + { + float dxy = n.dot2(n)/(ent->radius*ent->radius), dz = n.z*n.z*4/(ent->aboveeye + ent->eyeheight + zmargin); + vec fn(0, 0, 0); + if(dz > dxy && dir.z) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + else if(n.dot2(dir) < 0) + { + fn.x = n.x; + fn.y = n.y; + fn.normalize(); + } + return fn; + } + + vec supportpoint(const vec &n) const + { + vec p(ent->o); + if(n.z > 0) p.z += ent->aboveeye; + else p.z -= ent->eyeheight + zmargin; + if(n.x || n.y) + { + float r = ent->radius / n.magnitude2(); + p.x += n.x*r; + p.y += n.y*r; + } + return p; + } + }; + + struct EntCapsule : EntFuzzy + { + EntCapsule(physent *ent) : EntFuzzy(ent) {} + + vec supportpoint(const vec &n) const + { + vec p(ent->o); + if(n.z > 0) p.z += ent->aboveeye - ent->radius; + else p.z -= ent->eyeheight - ent->radius; + p.add(vec(n).mul(ent->radius / n.magnitude())); + return p; + } + }; + + struct EntEllipsoid : EntFuzzy + { + EntEllipsoid(physent *ent) : EntFuzzy(ent) {} + + vec supportpoint(const vec &dir) const + { + vec p(ent->o), n = vec(dir).normalize(); + p.x += ent->radius*n.x; + p.y += ent->radius*n.y; + p.z += (ent->aboveeye + ent->eyeheight)/2*(1 + n.z) - ent->eyeheight; + return p; + } + }; + + struct Model + { + vec o, radius; + matrix3 orient; + + Model(const vec &ent, const vec ¢er, const vec &radius, int yaw) : o(ent), radius(radius) + { + orient.setyaw(yaw*RAD); + o.add(orient.transposedtransform(center)); + } + + vec center() const { return o; } + }; + + struct ModelOBB : Model + { + ModelOBB(const vec &ent, const vec ¢er, const vec &radius, int yaw) : + Model(ent, center, radius, yaw) + {} + + vec contactface(const vec &wn, const vec &wdir) const + { + vec n = orient.transform(wn).div(radius), dir = orient.transform(wdir), + an(fabs(n.x), fabs(n.y), dir.z ? fabs(n.z) : 0), + fn(0, 0, 0); + if(an.x > an.y) + { + if(an.x > an.z) fn.x = n.x*dir.x < 0 ? (n.x > 0 ? 1 : -1) : 0; + else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + } + else if(an.y > an.z) fn.y = n.y*dir.y < 0 ? (n.y > 0 ? 1 : -1) : 0; + else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + return orient.transposedtransform(fn); + } + + vec supportpoint(const vec &n) const + { + vec ln = orient.transform(n), p(0, 0, 0); + if(ln.x > 0) p.x += radius.x; + else p.x -= radius.x; + if(ln.y > 0) p.y += radius.y; + else p.y -= radius.y; + if(ln.z > 0) p.z += radius.z; + else p.z -= radius.z; + return orient.transposedtransform(p).add(o); + } + }; + + struct ModelEllipse : Model + { + ModelEllipse(const vec &ent, const vec ¢er, const vec &radius, int yaw) : + Model(ent, center, radius, yaw) + {} + + vec contactface(const vec &wn, const vec &wdir) const + { + vec n = orient.transform(wn).div(radius), dir = orient.transform(wdir); + float dxy = n.dot2(n), dz = n.z*n.z; + vec fn(0, 0, 0); + if(dz > dxy && dir.z) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0; + else if(n.dot2(dir) < 0) + { + fn.x = n.x*radius.y; + fn.y = n.y*radius.x; + fn.normalize(); + } + return orient.transposedtransform(fn); + } + + vec supportpoint(const vec &n) const + { + vec ln = orient.transform(n), p(0, 0, 0); + if(ln.z > 0) p.z += radius.z; + else p.z -= radius.z; + if(ln.x || ln.y) + { + float r = ln.magnitude2(); + p.x += ln.x*radius.x/r; + p.y += ln.y*radius.y/r; + } + return orient.transposedtransform(p).add(o); + } + }; + + const float boundarytolerance = 1e-3f; + + template<class T, class U> + bool collide(const T &p1, const U &p2) + { + // v0 = center of Minkowski difference + vec v0 = p2.center().sub(p1.center()); + if(v0.iszero()) return true; // v0 and origin overlap ==> hit + + // v1 = support in direction of origin + vec n = vec(v0).neg(); + vec v1 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg())); + if(v1.dot(n) <= 0) return false; // origin outside v1 support plane ==> miss + + // v2 = support perpendicular to plane containing origin, v0 and v1 + n.cross(v1, v0); + if(n.iszero()) return true; // v0, v1 and origin colinear (and origin inside v1 support plane) == > hit + vec v2 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg())); + if(v2.dot(n) <= 0) return false; // origin outside v2 support plane ==> miss + + // v3 = support perpendicular to plane containing v0, v1 and v2 + n.cross(v0, v1, v2); + + // If the origin is on the - side of the plane, reverse the direction of the plane + if(n.dot(v0) > 0) + { + swap(v1, v2); + n.neg(); + } + + /// + // Phase One: Find a valid portal + + loopi(100) + { + // Obtain the next support point + vec v3 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg())); + if(v3.dot(n) <= 0) return false; // origin outside v3 support plane ==> miss + + // If origin is outside (v1,v0,v3), then portal is invalid -- eliminate v2 and find new support outside face + vec v3xv0; + v3xv0.cross(v3, v0); + if(v1.dot(v3xv0) < 0) + { + v2 = v3; + n.cross(v0, v1, v3); + continue; + } + + // If origin is outside (v3,v0,v2), then portal is invalid -- eliminate v1 and find new support outside face + if(v2.dot(v3xv0) > 0) + { + v1 = v3; + n.cross(v0, v3, v2); + continue; + } + + /// + // Phase Two: Refine the portal + + for(int j = 0;; j++) + { + // Compute outward facing normal of the portal + n.cross(v1, v2, v3); + + // If the origin is inside the portal, we have a hit + if(n.dot(v1) >= 0) return true; + + n.normalize(); + + // Find the support point in the direction of the portal's normal + vec v4 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg())); + + // If the origin is outside the support plane or the boundary is thin enough, we have a miss + if(v4.dot(n) <= 0 || vec(v4).sub(v3).dot(n) <= boundarytolerance || j > 100) return false; + + // Test origin against the three planes that separate the new portal candidates: (v1,v4,v0) (v2,v4,v0) (v3,v4,v0) + // Note: We're taking advantage of the triple product identities here as an optimization + // (v1 % v4) * v0 == v1 * (v4 % v0) > 0 if origin inside (v1, v4, v0) + // (v2 % v4) * v0 == v2 * (v4 % v0) > 0 if origin inside (v2, v4, v0) + // (v3 % v4) * v0 == v3 * (v4 % v0) > 0 if origin inside (v3, v4, v0) + vec v4xv0; + v4xv0.cross(v4, v0); + if(v1.dot(v4xv0) > 0) + { + if(v2.dot(v4xv0) > 0) v1 = v4; // Inside v1 & inside v2 ==> eliminate v1 + else v3 = v4; // Inside v1 & outside v2 ==> eliminate v3 + } + else + { + if(v3.dot(v4xv0) > 0) v2 = v4; // Outside v1 & inside v3 ==> eliminate v2 + else v1 = v4; // Outside v1 & outside v3 ==> eliminate v1 + } + } + } + return false; + } + + template<class T, class U> + bool collide(const T &p1, const U &p2, vec *contactnormal, vec *contactpoint1, vec *contactpoint2) + { + // v0 = center of Minkowski sum + vec v01 = p1.center(); + vec v02 = p2.center(); + vec v0 = vec(v02).sub(v01); + + // Avoid case where centers overlap -- any direction is fine in this case + if(v0.iszero()) v0 = vec(0, 0, 1e-5f); + + // v1 = support in direction of origin + vec n = vec(v0).neg(); + vec v11 = p1.supportpoint(vec(n).neg()); + vec v12 = p2.supportpoint(n); + vec v1 = vec(v12).sub(v11); + if(v1.dot(n) <= 0) + { + if(contactnormal) *contactnormal = n; + return false; + } + + // v2 - support perpendicular to v1,v0 + n.cross(v1, v0); + if(n.iszero()) + { + n = vec(v1).sub(v0); + n.normalize(); + if(contactnormal) *contactnormal = n; + if(contactpoint1) *contactpoint1 = v11; + if(contactpoint2) *contactpoint2 = v12; + return true; + } + vec v21 = p1.supportpoint(vec(n).neg()); + vec v22 = p2.supportpoint(n); + vec v2 = vec(v22).sub(v21); + if(v2.dot(n) <= 0) + { + if(contactnormal) *contactnormal = n; + return false; + } + + // Determine whether origin is on + or - side of plane (v1,v0,v2) + n.cross(v0, v1, v2); + ASSERT( !n.iszero() ); + // If the origin is on the - side of the plane, reverse the direction of the plane + if(n.dot(v0) > 0) + { + swap(v1, v2); + swap(v11, v21); + swap(v12, v22); + n.neg(); + } + + /// + // Phase One: Identify a portal + + loopi(100) + { + // Obtain the support point in a direction perpendicular to the existing plane + // Note: This point is guaranteed to lie off the plane + vec v31 = p1.supportpoint(vec(n).neg()); + vec v32 = p2.supportpoint(n); + vec v3 = vec(v32).sub(v31); + if(v3.dot(n) <= 0) + { + if(contactnormal) *contactnormal = n; + return false; + } + + // If origin is outside (v1,v0,v3), then eliminate v2 and loop + vec v3xv0; + v3xv0.cross(v3, v0); + if(v1.dot(v3xv0) < 0) + { + v2 = v3; + v21 = v31; + v22 = v32; + n.cross(v0, v1, v3); + continue; + } + + // If origin is outside (v3,v0,v2), then eliminate v1 and loop + if(v2.dot(v3xv0) > 0) + { + v1 = v3; + v11 = v31; + v12 = v32; + n.cross(v0, v3, v2); + continue; + } + + bool hit = false; + + /// + // Phase Two: Refine the portal + + // We are now inside of a wedge... + for(int j = 0;; j++) + { + // Compute normal of the wedge face + n.cross(v1, v2, v3); + + // Can this happen??? Can it be handled more cleanly? + if(n.iszero()) + { + ASSERT(0); + return true; + } + + n.normalize(); + + // If the origin is inside the wedge, we have a hit + if(n.dot(v1) >= 0 && !hit) + { + if(contactnormal) *contactnormal = n; + + // Compute the barycentric coordinates of the origin + if(contactpoint1 || contactpoint2) + { + float b0 = v3.scalartriple(v1, v2), + b1 = v0.scalartriple(v3, v2), + b2 = v3.scalartriple(v0, v1), + b3 = v0.scalartriple(v2, v1), + sum = b0 + b1 + b2 + b3; + if(sum <= 0) + { + b0 = 0; + b1 = n.scalartriple(v2, v3); + b2 = n.scalartriple(v3, v1); + b3 = n.scalartriple(v1, v2); + sum = b1 + b2 + b3; + } + if(contactpoint1) + *contactpoint1 = (vec(v01).mul(b0).add(vec(v11).mul(b1)).add(vec(v21).mul(b2)).add(vec(v31).mul(b3))).mul(1.0f/sum); + if(contactpoint2) + *contactpoint2 = (vec(v02).mul(b0).add(vec(v12).mul(b1)).add(vec(v22).mul(b2)).add(vec(v32).mul(b3))).mul(1.0f/sum); + } + + // HIT!!! + hit = true; + } + + // Find the support point in the direction of the wedge face + vec v41 = p1.supportpoint(vec(n).neg()); + vec v42 = p2.supportpoint(n); + vec v4 = vec(v42).sub(v41); + + // If the boundary is thin enough or the origin is outside the support plane for the newly discovered vertex, then we can terminate + if(v4.dot(n) <= 0 || vec(v4).sub(v3).dot(n) <= boundarytolerance || j > 100) + { + if(contactnormal) *contactnormal = n; + return hit; + } + + // Test origin against the three planes that separate the new portal candidates: (v1,v4,v0) (v2,v4,v0) (v3,v4,v0) + // Note: We're taking advantage of the triple product identities here as an optimization + // (v1 % v4) * v0 == v1 * (v4 % v0) > 0 if origin inside (v1, v4, v0) + // (v2 % v4) * v0 == v2 * (v4 % v0) > 0 if origin inside (v2, v4, v0) + // (v3 % v4) * v0 == v3 * (v4 % v0) > 0 if origin inside (v3, v4, v0) + vec v4xv0; + v4xv0.cross(v4, v0); + if(v1.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d1 = (v4,v0,v1) + { + if(v2.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d2 = (v4,v0,v2) + { + // Inside d1 & inside d2 ==> eliminate v1 + v1 = v4; + v11 = v41; + v12 = v42; + } + else + { + // Inside d1 & outside d2 ==> eliminate v3 + v3 = v4; + v31 = v41; + v32 = v42; + } + } + else + { + if(v3.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d3 = (v4,v0,v3) + { + // Outside d1 & inside d3 ==> eliminate v2 + v2 = v4; + v21 = v41; + v22 = v42; + } + else + { + // Outside d1 & outside d3 ==> eliminate v1 + v1 = v4; + v11 = v41; + v12 = v42; + } + } + } + } + return false; + } +} + |
