summaryrefslogtreecommitdiff
path: root/src/shared/crypto.cpp
diff options
context:
space:
mode:
authorxolatile2025-07-16 23:07:43 +0200
committerxolatile2025-07-16 23:07:43 +0200
commit7256502afa0babe60fcafbd2888cd3e33c3f9b6b (patch)
tree8a8495662a69bdadc4b5d9152656b9f02a44d668 /src/shared/crypto.cpp
parentbc596ac9d4cdd00abf537b88d3c544be161330cc (diff)
downloadxolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.xz
xolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.zst
Source code, broken...
Diffstat (limited to 'src/shared/crypto.cpp')
-rw-r--r--src/shared/crypto.cpp944
1 files changed, 944 insertions, 0 deletions
diff --git a/src/shared/crypto.cpp b/src/shared/crypto.cpp
new file mode 100644
index 0000000..134afc5
--- /dev/null
+++ b/src/shared/crypto.cpp
@@ -0,0 +1,944 @@
+#include "cube.h"
+
+///////////////////////// cryptography /////////////////////////////////
+
+/* Based off the reference implementation of Tiger, a cryptographically
+ * secure 192 bit hash function by Ross Anderson and Eli Biham. More info at:
+ * http://www.cs.technion.ac.il/~biham/Reports/Tiger/
+ */
+
+#define TIGER_PASSES 3
+
+namespace tiger
+{
+ typedef unsigned long long int chunk;
+
+ union hashval
+ {
+ uchar bytes[3*8];
+ chunk chunks[3];
+ };
+
+ chunk sboxes[4*256];
+
+ void compress(const chunk *str, chunk state[3])
+ {
+ chunk a, b, c;
+ chunk aa, bb, cc;
+ chunk x0, x1, x2, x3, x4, x5, x6, x7;
+
+ a = state[0];
+ b = state[1];
+ c = state[2];
+
+ x0=str[0]; x1=str[1]; x2=str[2]; x3=str[3];
+ x4=str[4]; x5=str[5]; x6=str[6]; x7=str[7];
+
+ aa = a;
+ bb = b;
+ cc = c;
+
+ loop(pass_no, TIGER_PASSES)
+ {
+ if(pass_no)
+ {
+ x0 -= x7 ^ 0xA5A5A5A5A5A5A5A5ULL; x1 ^= x0; x2 += x1; x3 -= x2 ^ ((~x1)<<19);
+ x4 ^= x3; x5 += x4; x6 -= x5 ^ ((~x4)>>23); x7 ^= x6;
+ x0 += x7; x1 -= x0 ^ ((~x7)<<19); x2 ^= x1; x3 += x2;
+ x4 -= x3 ^ ((~x2)>>23); x5 ^= x4; x6 += x5; x7 -= x6 ^ 0x0123456789ABCDEFULL;
+ }
+
+#define sb1 (sboxes)
+#define sb2 (sboxes+256)
+#define sb3 (sboxes+256*2)
+#define sb4 (sboxes+256*3)
+
+#define round(a, b, c, x) \
+ c ^= x; \
+ a -= sb1[((c)>>(0*8))&0xFF] ^ sb2[((c)>>(2*8))&0xFF] ^ \
+ sb3[((c)>>(4*8))&0xFF] ^ sb4[((c)>>(6*8))&0xFF] ; \
+ b += sb4[((c)>>(1*8))&0xFF] ^ sb3[((c)>>(3*8))&0xFF] ^ \
+ sb2[((c)>>(5*8))&0xFF] ^ sb1[((c)>>(7*8))&0xFF] ; \
+ b *= mul;
+
+ uint mul = !pass_no ? 5 : (pass_no==1 ? 7 : 9);
+ round(a, b, c, x0) round(b, c, a, x1) round(c, a, b, x2) round(a, b, c, x3)
+ round(b, c, a, x4) round(c, a, b, x5) round(a, b, c, x6) round(b, c, a, x7)
+
+ chunk tmp = a; a = c; c = b; b = tmp;
+ }
+
+ a ^= aa;
+ b -= bb;
+ c += cc;
+
+ state[0] = a;
+ state[1] = b;
+ state[2] = c;
+ }
+
+ void gensboxes()
+ {
+ const char *str = "Tiger - A Fast New Hash Function, by Ross Anderson and Eli Biham";
+ chunk state[3] = { 0x0123456789ABCDEFULL, 0xFEDCBA9876543210ULL, 0xF096A5B4C3B2E187ULL };
+ uchar temp[64];
+
+ if(!*(const uchar *)&islittleendian) loopj(64) temp[j^7] = str[j];
+ else loopj(64) temp[j] = str[j];
+ loopi(1024) loop(col, 8) ((uchar *)&sboxes[i])[col] = i&0xFF;
+
+ int abc = 2;
+ loop(pass, 5) loopi(256) for(int sb = 0; sb < 1024; sb += 256)
+ {
+ abc++;
+ if(abc >= 3) { abc = 0; compress((chunk *)temp, state); }
+ loop(col, 8)
+ {
+ uchar val = ((uchar *)&sboxes[sb+i])[col];
+ ((uchar *)&sboxes[sb+i])[col] = ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col];
+ ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col] = val;
+ }
+ }
+ }
+
+ void hash(const uchar *str, int length, hashval &val)
+ {
+ static bool init = false;
+ if(!init) { gensboxes(); init = true; }
+
+ uchar temp[64];
+
+ val.chunks[0] = 0x0123456789ABCDEFULL;
+ val.chunks[1] = 0xFEDCBA9876543210ULL;
+ val.chunks[2] = 0xF096A5B4C3B2E187ULL;
+
+ int i = length;
+ for(; i >= 64; i -= 64, str += 64)
+ {
+ if(!*(const uchar *)&islittleendian)
+ {
+ loopj(64) temp[j^7] = str[j];
+ compress((chunk *)temp, val.chunks);
+ }
+ else compress((chunk *)str, val.chunks);
+ }
+
+ int j;
+ if(!*(const uchar *)&islittleendian)
+ {
+ for(j = 0; j < i; j++) temp[j^7] = str[j];
+ temp[j^7] = 0x01;
+ while(++j&7) temp[j^7] = 0;
+ }
+ else
+ {
+ for(j = 0; j < i; j++) temp[j] = str[j];
+ temp[j] = 0x01;
+ while(++j&7) temp[j] = 0;
+ }
+
+ if(j > 56)
+ {
+ while(j < 64) temp[j++] = 0;
+ compress((chunk *)temp, val.chunks);
+ j = 0;
+ }
+ while(j < 56) temp[j++] = 0;
+ *(chunk *)(temp+56) = (chunk)length<<3;
+ compress((chunk *)temp, val.chunks);
+ if(!*(const uchar *)&islittleendian)
+ {
+ loopk(3)
+ {
+ uchar *c = &val.bytes[k*sizeof(chunk)];
+ loopl(sizeof(chunk)/2) swap(c[l], c[sizeof(chunk)-1-l]);
+ }
+ }
+ }
+}
+
+/* Elliptic curve cryptography based on NIST DSS prime curves. */
+
+#define BI_DIGIT_BITS 16
+#define BI_DIGIT_MASK ((1<<BI_DIGIT_BITS)-1)
+
+template<int BI_DIGITS> struct bigint
+{
+ typedef ushort digit;
+ typedef uint dbldigit;
+
+ int len;
+ digit digits[BI_DIGITS];
+
+ bigint() {}
+ bigint(digit n) { if(n) { len = 1; digits[0] = n; } else len = 0; }
+ bigint(const char *s) { parse(s); }
+ template<int Y_DIGITS> bigint(const bigint<Y_DIGITS> &y) { *this = y; }
+
+ static int parsedigits(ushort *digits, int maxlen, const char *s)
+ {
+ int slen = 0;
+ while(isxdigit(s[slen])) slen++;
+ int len = (slen+2*sizeof(ushort)-1)/(2*sizeof(ushort));
+ if(len>maxlen) return 0;
+ memset(digits, 0, len*sizeof(ushort));
+ loopi(slen)
+ {
+ int c = s[slen-i-1];
+ if(isalpha(c)) c = toupper(c) - 'A' + 10;
+ else if(isdigit(c)) c -= '0';
+ else return 0;
+ digits[i/(2*sizeof(ushort))] |= c<<(4*(i%(2*sizeof(ushort))));
+ }
+ return len;
+ }
+
+ void parse(const char *s)
+ {
+ len = parsedigits(digits, BI_DIGITS, s);
+ shrink();
+ }
+
+ void zero() { len = 0; }
+
+ void print(stream *out) const
+ {
+ vector<char> buf;
+ printdigits(buf);
+ out->write(buf.getbuf(), buf.length());
+ }
+
+ void printdigits(vector<char> &buf) const
+ {
+ loopi(len)
+ {
+ digit d = digits[len-i-1];
+ loopj(BI_DIGIT_BITS/4)
+ {
+ uint shift = BI_DIGIT_BITS - (j+1)*4;
+ int val = (d >> shift) & 0xF;
+ if(val < 10) buf.add('0' + val);
+ else buf.add('a' + val - 10);
+ }
+ }
+ }
+
+ template<int Y_DIGITS> bigint &operator=(const bigint<Y_DIGITS> &y)
+ {
+ len = y.len;
+ memcpy(digits, y.digits, len*sizeof(digit));
+ return *this;
+ }
+
+ bool iszero() const { return !len; }
+ bool isone() const { return len==1 && digits[0]==1; }
+
+ int numbits() const
+ {
+ if(!len) return 0;
+ int bits = len*BI_DIGIT_BITS;
+ digit last = digits[len-1], mask = 1<<(BI_DIGIT_BITS-1);
+ while(mask)
+ {
+ if(last&mask) return bits;
+ bits--;
+ mask >>= 1;
+ }
+ return 0;
+ }
+
+ bool hasbit(int n) const { return n/BI_DIGIT_BITS < len && ((digits[n/BI_DIGIT_BITS]>>(n%BI_DIGIT_BITS))&1); }
+
+ bool morebits(int n) const { return len > n/BI_DIGIT_BITS; }
+
+ template<int X_DIGITS, int Y_DIGITS> bigint &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ dbldigit carry = 0;
+ int maxlen = max(x.len, y.len), i;
+ for(i = 0; i < y.len || carry; i++)
+ {
+ carry += (i < x.len ? (dbldigit)x.digits[i] : 0) + (i < y.len ? (dbldigit)y.digits[i] : 0);
+ digits[i] = (digit)carry;
+ carry >>= BI_DIGIT_BITS;
+ }
+ if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit));
+ len = max(i, maxlen);
+ return *this;
+ }
+ template<int Y_DIGITS> bigint &add(const bigint<Y_DIGITS> &y) { return add(*this, y); }
+
+ template<int X_DIGITS, int Y_DIGITS> bigint &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ ASSERT(x >= y);
+ dbldigit borrow = 0;
+ int i;
+ for(i = 0; i < y.len || borrow; i++)
+ {
+ borrow = (1<<BI_DIGIT_BITS) + (dbldigit)x.digits[i] - (i<y.len ? (dbldigit)y.digits[i] : 0) - borrow;
+ digits[i] = (digit)borrow;
+ borrow = (borrow>>BI_DIGIT_BITS)^1;
+ }
+ if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit));
+ len = x.len;
+ shrink();
+ return *this;
+ }
+ template<int Y_DIGITS> bigint &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); }
+
+ void shrink() { while(len > 0 && !digits[len-1]) len--; }
+ void shrinkdigits(int n) { len = n; shrink(); }
+ void shrinkbits(int n) { shrinkdigits(n/BI_DIGIT_BITS); }
+
+ template<int Y_DIGITS> void copyshrinkdigits(const bigint<Y_DIGITS> &y, int n)
+ {
+ len = clamp(y.len, 0, n);
+ memcpy(digits, y.digits, len*sizeof(digit));
+ shrink();
+ }
+ template<int Y_DIGITS> void copyshrinkbits(const bigint<Y_DIGITS> &y, int n)
+ {
+ copyshrinkdigits(y, n/BI_DIGIT_BITS);
+ }
+
+ template<int X_DIGITS, int Y_DIGITS> bigint &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ if(!x.len || !y.len) { len = 0; return *this; }
+ memset(digits, 0, y.len*sizeof(digit));
+ loopi(x.len)
+ {
+ dbldigit carry = 0;
+ loopj(y.len)
+ {
+ carry += (dbldigit)x.digits[i] * (dbldigit)y.digits[j] + (dbldigit)digits[i+j];
+ digits[i+j] = (digit)carry;
+ carry >>= BI_DIGIT_BITS;
+ }
+ digits[i+y.len] = carry;
+ }
+ len = x.len + y.len;
+ shrink();
+ return *this;
+ }
+
+ bigint &rshift(int n)
+ {
+ assert(len <= BI_DIGITS);
+ if(!len || n<=0) return *this;
+ if(n >= len*BI_DIGIT_BITS) { len = 0; return *this; }
+ int dig = (n-1)/BI_DIGIT_BITS;
+ n = ((n-1) % BI_DIGIT_BITS)+1;
+ digit carry = digit(digits[dig]>>n);
+ for(int i = dig+1; i < len; i++)
+ {
+ digit tmp = digits[i];
+ digits[i-dig-1] = digit((tmp<<(BI_DIGIT_BITS-n)) | carry);
+ carry = digit(tmp>>n);
+ }
+ digits[len-dig-1] = carry;
+ len -= dig + (n/BI_DIGIT_BITS);
+ shrink();
+ return *this;
+ }
+
+ bigint &lshift(int n)
+ {
+ if(!len || n<=0) return *this;
+ int dig = n/BI_DIGIT_BITS;
+ n %= BI_DIGIT_BITS;
+ digit carry = 0;
+ loopirev(len)
+ {
+ digit tmp = digits[i];
+ digits[i+dig] = digit((tmp<<n) | carry);
+ carry = digit(tmp>>(BI_DIGIT_BITS-n));
+ }
+ len += dig;
+ if(carry) digits[len++] = carry;
+ if(dig) memset(digits, 0, dig*sizeof(digit));
+ return *this;
+ }
+
+ void zerodigits(int i, int n)
+ {
+ memset(&digits[i], 0, n*sizeof(digit));
+ }
+ void zerobits(int i, int n)
+ {
+ zerodigits(i/BI_DIGIT_BITS, n/BI_DIGIT_BITS);
+ }
+
+ template<int Y_DIGITS> void copydigits(int to, const bigint<Y_DIGITS> &y, int from, int n)
+ {
+ int avail = clamp(y.len-from, 0, n);
+ memcpy(&digits[to], &y.digits[from], avail*sizeof(digit));
+ if(avail < n) memset(&digits[to+avail], 0, (n-avail)*sizeof(digit));
+ }
+ template<int Y_DIGITS> void copybits(int to, const bigint<Y_DIGITS> &y, int from, int n)
+ {
+ copydigits(to/BI_DIGIT_BITS, y, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS);
+ }
+
+ void dupdigits(int to, int from, int n)
+ {
+ memcpy(&digits[to], &digits[from], n*sizeof(digit));
+ }
+ void dupbits(int to, int from, int n)
+ {
+ dupdigits(to/BI_DIGIT_BITS, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS);
+ }
+
+ template<int Y_DIGITS> bool operator==(const bigint<Y_DIGITS> &y) const
+ {
+ if(len!=y.len) return false;
+ loopirev(len) if(digits[i]!=y.digits[i]) return false;
+ return true;
+ }
+ template<int Y_DIGITS> bool operator!=(const bigint<Y_DIGITS> &y) const { return !(*this==y); }
+ template<int Y_DIGITS> bool operator<(const bigint<Y_DIGITS> &y) const
+ {
+ if(len<y.len) return true;
+ if(len>y.len) return false;
+ loopirev(len)
+ {
+ if(digits[i]<y.digits[i]) return true;
+ if(digits[i]>y.digits[i]) return false;
+ }
+ return false;
+ }
+ template<int Y_DIGITS> bool operator>(const bigint<Y_DIGITS> &y) const { return y<*this; }
+ template<int Y_DIGITS> bool operator<=(const bigint<Y_DIGITS> &y) const { return !(y<*this); }
+ template<int Y_DIGITS> bool operator>=(const bigint<Y_DIGITS> &y) const { return !(*this<y); }
+};
+
+#define GF_BITS 192
+#define GF_DIGITS ((GF_BITS+BI_DIGIT_BITS-1)/BI_DIGIT_BITS)
+
+typedef bigint<GF_DIGITS+1> gfint;
+
+/* NIST prime Galois fields.
+ * Currently only supports NIST P-192, where P=2^192-2^64-1, and P-256, where P=2^256-2^224+2^192+2^96-1.
+ */
+struct gfield : gfint
+{
+ static const gfield P;
+
+ gfield() {}
+ gfield(digit n) : gfint(n) {}
+ gfield(const char *s) : gfint(s) {}
+
+ template<int Y_DIGITS> gfield(const bigint<Y_DIGITS> &y) : gfint(y) {}
+
+ template<int Y_DIGITS> gfield &operator=(const bigint<Y_DIGITS> &y)
+ {
+ gfint::operator=(y);
+ return *this;
+ }
+
+ template<int X_DIGITS, int Y_DIGITS> gfield &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ gfint::add(x, y);
+ if(*this >= P) gfint::sub(*this, P);
+ return *this;
+ }
+ template<int Y_DIGITS> gfield &add(const bigint<Y_DIGITS> &y) { return add(*this, y); }
+
+ template<int X_DIGITS> gfield &mul2(const bigint<X_DIGITS> &x) { return add(x, x); }
+ gfield &mul2() { return mul2(*this); }
+
+ gfield &div2()
+ {
+ if(hasbit(0)) gfint::add(*this, P);
+ rshift(1);
+ return *this;
+ }
+
+ template<int X_DIGITS, int Y_DIGITS> gfield &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ if(x < y)
+ {
+ gfint tmp; /* necessary if this==&y, using this instead would clobber y */
+ tmp.add(x, P);
+ gfint::sub(tmp, y);
+ }
+ else gfint::sub(x, y);
+ return *this;
+ }
+ template<int Y_DIGITS> gfield &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); }
+
+ template<int X_DIGITS> gfield &neg(const bigint<X_DIGITS> &x)
+ {
+ gfint::sub(P, x);
+ return *this;
+ }
+ gfield &neg() { return neg(*this); }
+
+ template<int X_DIGITS> gfield &square(const bigint<X_DIGITS> &x) { return mul(x, x); }
+ gfield &square() { return square(*this); }
+
+ template<int X_DIGITS, int Y_DIGITS> gfield &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ bigint<X_DIGITS+Y_DIGITS> result;
+ result.mul(x, y);
+ reduce(result);
+ return *this;
+ }
+ template<int Y_DIGITS> gfield &mul(const bigint<Y_DIGITS> &y) { return mul(*this, y); }
+
+ template<int RESULT_DIGITS> void reduce(const bigint<RESULT_DIGITS> &result)
+ {
+#if GF_BITS==192
+ // B = T + S1 + S2 + S3 mod p
+ copyshrinkdigits(result, GF_DIGITS); // T
+
+ if(result.morebits(192))
+ {
+ gfield s;
+ s.copybits(0, result, 192, 64);
+ s.dupbits(64, 0, 64);
+ s.shrinkbits(128);
+ add(s); // S1
+
+ if(result.morebits(256))
+ {
+ s.zerobits(0, 64);
+ s.copybits(64, result, 256, 64);
+ s.dupbits(128, 64, 64);
+ s.shrinkdigits(GF_DIGITS);
+ add(s); // S2
+
+ if(result.morebits(320))
+ {
+ s.copybits(0, result, 320, 64);
+ s.dupbits(64, 0, 64);
+ s.dupbits(128, 0, 64);
+ s.shrinkdigits(GF_DIGITS);
+ add(s); // S3
+ }
+ }
+ }
+ else if(*this >= P) gfint::sub(*this, P);
+#elif GF_BITS==256
+ // B = T + 2*S1 + 2*S2 + S3 + S4 - D1 - D2 - D3 - D4 mod p
+ copyshrinkdigits(result, GF_DIGITS); // T
+
+ if(result.morebits(256))
+ {
+ gfield s;
+ if(result.morebits(352))
+ {
+ s.zerobits(0, 96);
+ s.copybits(96, result, 352, 160);
+ s.shrinkdigits(GF_DIGITS);
+ add(s); add(s); // S1
+
+ if(result.morebits(384))
+ {
+ //s.zerobits(0, 96);
+ s.copybits(96, result, 384, 128);
+ s.shrinkbits(224);
+ add(s); add(s); // S2
+ }
+ }
+
+ s.copybits(0, result, 256, 96);
+ s.zerobits(96, 96);
+ s.copybits(192, result, 448, 64);
+ s.shrinkdigits(GF_DIGITS);
+ add(s); // S3
+
+ s.copybits(0, result, 288, 96);
+ s.copybits(96, result, 416, 96);
+ s.dupbits(192, 96, 32);
+ s.copybits(224, result, 256, 32);
+ s.shrinkdigits(GF_DIGITS);
+ add(s); // S4
+
+ s.copybits(0, result, 352, 96);
+ s.zerobits(96, 96);
+ s.copybits(192, result, 256, 32);
+ s.copybits(224, result, 320, 32);
+ s.shrinkdigits(GF_DIGITS);
+ sub(s); // D1
+
+ s.copybits(0, result, 384, 128);
+ //s.zerobits(128, 64);
+ s.copybits(192, result, 288, 32);
+ s.copybits(224, result, 352, 32);
+ s.shrinkdigits(GF_DIGITS);
+ sub(s); // D2
+
+ s.copybits(0, result, 416, 96);
+ s.copybits(96, result, 256, 96);
+ s.zerobits(192, 32);
+ s.copybits(224, result, 384, 32);
+ s.shrinkdigits(GF_DIGITS);
+ sub(s); // D3
+
+ s.copybits(0, result, 448, 64);
+ s.zerobits(64, 32);
+ s.copybits(96, result, 288, 96);
+ //s.zerobits(192, 32);
+ s.copybits(224, result, 416, 32);
+ s.shrinkdigits(GF_DIGITS);
+ sub(s); // D4
+ }
+ else if(*this >= P) gfint::sub(*this, P);
+#else
+#error Unsupported GF
+#endif
+ }
+
+ template<int X_DIGITS, int Y_DIGITS> gfield &pow(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
+ {
+ gfield a(x);
+ if(y.hasbit(0)) *this = a;
+ else
+ {
+ len = 1;
+ digits[0] = 1;
+ if(!y.len) return *this;
+ }
+ for(int i = 1, j = y.numbits(); i < j; i++)
+ {
+ a.square();
+ if(y.hasbit(i)) mul(a);
+ }
+ return *this;
+ }
+ template<int Y_DIGITS> gfield &pow(const bigint<Y_DIGITS> &y) { return pow(*this, y); }
+
+ bool invert(const gfield &x)
+ {
+ if(!x.len) return false;
+ gfint u(x), v(P), A((gfint::digit)1), C((gfint::digit)0);
+ while(!u.iszero())
+ {
+ int ushift = 0, ashift = 0;
+ while(!u.hasbit(ushift))
+ {
+ ushift++;
+ if(A.hasbit(ashift))
+ {
+ if(ashift) { A.rshift(ashift); ashift = 0; }
+ A.add(P);
+ }
+ ashift++;
+ }
+ if(ushift) u.rshift(ushift);
+ if(ashift) A.rshift(ashift);
+ int vshift = 0, cshift = 0;
+ while(!v.hasbit(vshift))
+ {
+ vshift++;
+ if(C.hasbit(cshift))
+ {
+ if(cshift) { C.rshift(cshift); cshift = 0; }
+ C.add(P);
+ }
+ cshift++;
+ }
+ if(vshift) v.rshift(vshift);
+ if(cshift) C.rshift(cshift);
+ if(u >= v)
+ {
+ u.sub(v);
+ if(A < C) A.add(P);
+ A.sub(C);
+ }
+ else
+ {
+ v.sub(v, u);
+ if(C < A) C.add(P);
+ C.sub(A);
+ }
+ }
+ if(C >= P) gfint::sub(C, P);
+ else { len = C.len; memcpy(digits, C.digits, len*sizeof(digit)); }
+ ASSERT(*this < P);
+ return true;
+ }
+ void invert() { invert(*this); }
+
+ template<int X_DIGITS> static int legendre(const bigint<X_DIGITS> &x)
+ {
+ static const gfint Psub1div2(gfint(P).sub(bigint<1>(1)).rshift(1));
+ gfield L;
+ L.pow(x, Psub1div2);
+ if(!L.len) return 0;
+ if(L.len==1) return 1;
+ return -1;
+ }
+ int legendre() const { return legendre(*this); }
+
+ bool sqrt(const gfield &x)
+ {
+ if(!x.len) { len = 0; return true; }
+#if GF_BITS==224
+#error Unsupported GF
+#else
+ ASSERT((P.digits[0]%4)==3);
+ static const gfint Padd1div4(gfint(P).add(bigint<1>(1)).rshift(2));
+ switch(legendre(x))
+ {
+ case 0: len = 0; return true;
+ case -1: return false;
+ default: pow(x, Padd1div4); return true;
+ }
+#endif
+ }
+ bool sqrt() { return sqrt(*this); }
+};
+
+struct ecjacobian
+{
+ static const gfield B;
+ static const ecjacobian base;
+ static const ecjacobian origin;
+
+ gfield x, y, z;
+
+ ecjacobian() {}
+ ecjacobian(const gfield &x, const gfield &y) : x(x), y(y), z(bigint<1>(1)) {}
+ ecjacobian(const gfield &x, const gfield &y, const gfield &z) : x(x), y(y), z(z) {}
+
+ void mul2()
+ {
+ if(z.iszero()) return;
+ else if(y.iszero()) { *this = origin; return; }
+ gfield a, b, c, d;
+ d.sub(x, c.square(z));
+ d.mul(c.add(x));
+ c.mul2(d).add(d);
+ z.mul(y).add(z);
+ a.square(y);
+ b.mul2(a);
+ d.mul2(x).mul(b);
+ x.square(c).sub(d).sub(d);
+ a.square(b).add(a);
+ y.sub(d, x).mul(c).sub(a);
+ }
+
+ void add(const ecjacobian &q)
+ {
+ if(q.z.iszero()) return;
+ else if(z.iszero()) { *this = q; return; }
+ gfield a, b, c, d, e, f;
+ a.square(z);
+ b.mul(q.y, a).mul(z);
+ a.mul(q.x);
+ if(q.z.isone())
+ {
+ c.add(x, a);
+ d.add(y, b);
+ a.sub(x, a);
+ b.sub(y, b);
+ }
+ else
+ {
+ f.mul(y, e.square(q.z)).mul(q.z);
+ e.mul(x);
+ c.add(e, a);
+ d.add(f, b);
+ a.sub(e, a);
+ b.sub(f, b);
+ }
+ if(a.iszero()) { if(b.iszero()) mul2(); else *this = origin; return; }
+ if(!q.z.isone()) z.mul(q.z);
+ z.mul(a);
+ x.square(b).sub(f.mul(c, e.square(a)));
+ y.sub(f, x).sub(x).mul(b).sub(e.mul(a).mul(d)).div2();
+ }
+
+ template<int Q_DIGITS> void mul(const ecjacobian &p, const bigint<Q_DIGITS> &q)
+ {
+ *this = origin;
+ loopirev(q.numbits())
+ {
+ mul2();
+ if(q.hasbit(i)) add(p);
+ }
+ }
+ template<int Q_DIGITS> void mul(const bigint<Q_DIGITS> &q) { ecjacobian tmp(*this); mul(tmp, q); }
+
+ void normalize()
+ {
+ if(z.iszero() || z.isone()) return;
+ gfield tmp;
+ z.invert();
+ tmp.square(z);
+ x.mul(tmp);
+ y.mul(tmp).mul(z);
+ z = bigint<1>(1);
+ }
+
+ bool calcy(bool ybit)
+ {
+ gfield y2, tmp;
+ y2.square(x).mul(x).sub(tmp.add(x, x).add(x)).add(B);
+ if(!y.sqrt(y2)) { y.zero(); return false; }
+ if(y.hasbit(0) != ybit) y.neg();
+ return true;
+ }
+
+ void print(vector<char> &buf)
+ {
+ normalize();
+ buf.add(y.hasbit(0) ? '-' : '+');
+ x.printdigits(buf);
+ }
+
+ void parse(const char *s)
+ {
+ bool ybit = *s++ == '-';
+ x.parse(s);
+ calcy(ybit);
+ z = bigint<1>(1);
+ }
+};
+
+const ecjacobian ecjacobian::origin(gfield((gfield::digit)1), gfield((gfield::digit)1), gfield((gfield::digit)0));
+
+#if GF_BITS==192
+const gfield gfield::P("fffffffffffffffffffffffffffffffeffffffffffffffff");
+const gfield ecjacobian::B("64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1");
+const ecjacobian ecjacobian::base(
+ gfield("188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012"),
+ gfield("07192b95ffc8da78631011ed6b24cdd573f977a11e794811")
+);
+#elif GF_BITS==224
+const gfield gfield::P("ffffffffffffffffffffffffffffffff000000000000000000000001");
+const gfield ecjacobian::B("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4");
+const ecjacobian ecjacobian::base(
+ gfield("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"),
+ gfield("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34")
+);
+#elif GF_BITS==256
+const gfield gfield::P("ffffffff00000001000000000000000000000000ffffffffffffffffffffffff");
+const gfield ecjacobian::B("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b");
+const ecjacobian ecjacobian::base(
+ gfield("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"),
+ gfield("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5")
+);
+#elif GF_BITS==384
+const gfield gfield::P("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff");
+const gfield ecjacobian::B("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef");
+const ecjacobian ecjacobian::base(
+ gfield("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7"),
+ gfield("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
+);
+#elif GF_BITS==521
+const gfield gfield::P("1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
+const gfield ecjacobian::B("051953eb968e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00");
+const ecjacobian ecjacobian::base(
+ gfield("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66"),
+ gfield("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650")
+);
+#else
+#error Unsupported GF
+#endif
+
+void calcpubkey(gfint privkey, vector<char> &pubstr)
+{
+ ecjacobian c(ecjacobian::base);
+ c.mul(privkey);
+ c.normalize();
+ c.print(pubstr);
+ pubstr.add('\0');
+}
+
+bool calcpubkey(const char *privstr, vector<char> &pubstr)
+{
+ if(!privstr[0]) return false;
+ gfint privkey;
+ privkey.parse(privstr);
+ calcpubkey(privkey, pubstr);
+ return true;
+}
+
+void genprivkey(const char *seed, vector<char> &privstr, vector<char> &pubstr)
+{
+ tiger::hashval hash;
+ tiger::hash((const uchar *)seed, (int)strlen(seed), hash);
+ bigint<8*sizeof(hash.bytes)/BI_DIGIT_BITS> privkey;
+ memcpy(privkey.digits, hash.bytes, sizeof(hash.bytes));
+ privkey.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS;
+ privkey.shrink();
+ privkey.printdigits(privstr);
+ privstr.add('\0');
+
+ calcpubkey(privkey, pubstr);
+}
+
+bool hashstring(const char *str, char *result, int maxlen)
+{
+ tiger::hashval hv;
+ if(maxlen < 2*(int)sizeof(hv.bytes) + 1) return false;
+ tiger::hash((uchar *)str, strlen(str), hv);
+ loopi(sizeof(hv.bytes))
+ {
+ uchar c = hv.bytes[i];
+ *result++ = "0123456789abcdef"[c&0xF];
+ *result++ = "0123456789abcdef"[c>>4];
+ }
+ *result = '\0';
+ return true;
+}
+
+void answerchallenge(const char *privstr, const char *challenge, vector<char> &answerstr)
+{
+ gfint privkey;
+ privkey.parse(privstr);
+ ecjacobian answer;
+ answer.parse(challenge);
+ answer.mul(privkey);
+ answer.normalize();
+ answer.x.printdigits(answerstr);
+ answerstr.add('\0');
+}
+
+void *parsepubkey(const char *pubstr)
+{
+ ecjacobian *pubkey = new ecjacobian;
+ pubkey->parse(pubstr);
+ return pubkey;
+}
+
+void freepubkey(void *pubkey)
+{
+ delete (ecjacobian *)pubkey;
+}
+
+void *genchallenge(void *pubkey, const void *seed, int seedlen, vector<char> &challengestr)
+{
+ tiger::hashval hash;
+ tiger::hash((const uchar *)seed, seedlen, hash);
+ gfint challenge;
+ memcpy(challenge.digits, hash.bytes, sizeof(hash.bytes));
+ challenge.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS;
+ challenge.shrink();
+
+ ecjacobian answer(*(ecjacobian *)pubkey);
+ answer.mul(challenge);
+ answer.normalize();
+
+ ecjacobian secret(ecjacobian::base);
+ secret.mul(challenge);
+ secret.normalize();
+
+ secret.print(challengestr);
+ challengestr.add('\0');
+
+ return new gfield(answer.x);
+}
+
+void freechallenge(void *answer)
+{
+ delete (gfint *)answer;
+}
+
+bool checkchallenge(const char *answerstr, void *correct)
+{
+ gfint answer(answerstr);
+ return answer == *(gfint *)correct;
+}
+