diff options
| author | xolatile | 2025-07-16 23:07:43 +0200 |
|---|---|---|
| committer | xolatile | 2025-07-16 23:07:43 +0200 |
| commit | 7256502afa0babe60fcafbd2888cd3e33c3f9b6b (patch) | |
| tree | 8a8495662a69bdadc4b5d9152656b9f02a44d668 /src/shared/crypto.cpp | |
| parent | bc596ac9d4cdd00abf537b88d3c544be161330cc (diff) | |
| download | xolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.xz xolatile-badassbug-7256502afa0babe60fcafbd2888cd3e33c3f9b6b.tar.zst | |
Source code, broken...
Diffstat (limited to 'src/shared/crypto.cpp')
| -rw-r--r-- | src/shared/crypto.cpp | 944 |
1 files changed, 944 insertions, 0 deletions
diff --git a/src/shared/crypto.cpp b/src/shared/crypto.cpp new file mode 100644 index 0000000..134afc5 --- /dev/null +++ b/src/shared/crypto.cpp @@ -0,0 +1,944 @@ +#include "cube.h" + +///////////////////////// cryptography ///////////////////////////////// + +/* Based off the reference implementation of Tiger, a cryptographically + * secure 192 bit hash function by Ross Anderson and Eli Biham. More info at: + * http://www.cs.technion.ac.il/~biham/Reports/Tiger/ + */ + +#define TIGER_PASSES 3 + +namespace tiger +{ + typedef unsigned long long int chunk; + + union hashval + { + uchar bytes[3*8]; + chunk chunks[3]; + }; + + chunk sboxes[4*256]; + + void compress(const chunk *str, chunk state[3]) + { + chunk a, b, c; + chunk aa, bb, cc; + chunk x0, x1, x2, x3, x4, x5, x6, x7; + + a = state[0]; + b = state[1]; + c = state[2]; + + x0=str[0]; x1=str[1]; x2=str[2]; x3=str[3]; + x4=str[4]; x5=str[5]; x6=str[6]; x7=str[7]; + + aa = a; + bb = b; + cc = c; + + loop(pass_no, TIGER_PASSES) + { + if(pass_no) + { + x0 -= x7 ^ 0xA5A5A5A5A5A5A5A5ULL; x1 ^= x0; x2 += x1; x3 -= x2 ^ ((~x1)<<19); + x4 ^= x3; x5 += x4; x6 -= x5 ^ ((~x4)>>23); x7 ^= x6; + x0 += x7; x1 -= x0 ^ ((~x7)<<19); x2 ^= x1; x3 += x2; + x4 -= x3 ^ ((~x2)>>23); x5 ^= x4; x6 += x5; x7 -= x6 ^ 0x0123456789ABCDEFULL; + } + +#define sb1 (sboxes) +#define sb2 (sboxes+256) +#define sb3 (sboxes+256*2) +#define sb4 (sboxes+256*3) + +#define round(a, b, c, x) \ + c ^= x; \ + a -= sb1[((c)>>(0*8))&0xFF] ^ sb2[((c)>>(2*8))&0xFF] ^ \ + sb3[((c)>>(4*8))&0xFF] ^ sb4[((c)>>(6*8))&0xFF] ; \ + b += sb4[((c)>>(1*8))&0xFF] ^ sb3[((c)>>(3*8))&0xFF] ^ \ + sb2[((c)>>(5*8))&0xFF] ^ sb1[((c)>>(7*8))&0xFF] ; \ + b *= mul; + + uint mul = !pass_no ? 5 : (pass_no==1 ? 7 : 9); + round(a, b, c, x0) round(b, c, a, x1) round(c, a, b, x2) round(a, b, c, x3) + round(b, c, a, x4) round(c, a, b, x5) round(a, b, c, x6) round(b, c, a, x7) + + chunk tmp = a; a = c; c = b; b = tmp; + } + + a ^= aa; + b -= bb; + c += cc; + + state[0] = a; + state[1] = b; + state[2] = c; + } + + void gensboxes() + { + const char *str = "Tiger - A Fast New Hash Function, by Ross Anderson and Eli Biham"; + chunk state[3] = { 0x0123456789ABCDEFULL, 0xFEDCBA9876543210ULL, 0xF096A5B4C3B2E187ULL }; + uchar temp[64]; + + if(!*(const uchar *)&islittleendian) loopj(64) temp[j^7] = str[j]; + else loopj(64) temp[j] = str[j]; + loopi(1024) loop(col, 8) ((uchar *)&sboxes[i])[col] = i&0xFF; + + int abc = 2; + loop(pass, 5) loopi(256) for(int sb = 0; sb < 1024; sb += 256) + { + abc++; + if(abc >= 3) { abc = 0; compress((chunk *)temp, state); } + loop(col, 8) + { + uchar val = ((uchar *)&sboxes[sb+i])[col]; + ((uchar *)&sboxes[sb+i])[col] = ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col]; + ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col] = val; + } + } + } + + void hash(const uchar *str, int length, hashval &val) + { + static bool init = false; + if(!init) { gensboxes(); init = true; } + + uchar temp[64]; + + val.chunks[0] = 0x0123456789ABCDEFULL; + val.chunks[1] = 0xFEDCBA9876543210ULL; + val.chunks[2] = 0xF096A5B4C3B2E187ULL; + + int i = length; + for(; i >= 64; i -= 64, str += 64) + { + if(!*(const uchar *)&islittleendian) + { + loopj(64) temp[j^7] = str[j]; + compress((chunk *)temp, val.chunks); + } + else compress((chunk *)str, val.chunks); + } + + int j; + if(!*(const uchar *)&islittleendian) + { + for(j = 0; j < i; j++) temp[j^7] = str[j]; + temp[j^7] = 0x01; + while(++j&7) temp[j^7] = 0; + } + else + { + for(j = 0; j < i; j++) temp[j] = str[j]; + temp[j] = 0x01; + while(++j&7) temp[j] = 0; + } + + if(j > 56) + { + while(j < 64) temp[j++] = 0; + compress((chunk *)temp, val.chunks); + j = 0; + } + while(j < 56) temp[j++] = 0; + *(chunk *)(temp+56) = (chunk)length<<3; + compress((chunk *)temp, val.chunks); + if(!*(const uchar *)&islittleendian) + { + loopk(3) + { + uchar *c = &val.bytes[k*sizeof(chunk)]; + loopl(sizeof(chunk)/2) swap(c[l], c[sizeof(chunk)-1-l]); + } + } + } +} + +/* Elliptic curve cryptography based on NIST DSS prime curves. */ + +#define BI_DIGIT_BITS 16 +#define BI_DIGIT_MASK ((1<<BI_DIGIT_BITS)-1) + +template<int BI_DIGITS> struct bigint +{ + typedef ushort digit; + typedef uint dbldigit; + + int len; + digit digits[BI_DIGITS]; + + bigint() {} + bigint(digit n) { if(n) { len = 1; digits[0] = n; } else len = 0; } + bigint(const char *s) { parse(s); } + template<int Y_DIGITS> bigint(const bigint<Y_DIGITS> &y) { *this = y; } + + static int parsedigits(ushort *digits, int maxlen, const char *s) + { + int slen = 0; + while(isxdigit(s[slen])) slen++; + int len = (slen+2*sizeof(ushort)-1)/(2*sizeof(ushort)); + if(len>maxlen) return 0; + memset(digits, 0, len*sizeof(ushort)); + loopi(slen) + { + int c = s[slen-i-1]; + if(isalpha(c)) c = toupper(c) - 'A' + 10; + else if(isdigit(c)) c -= '0'; + else return 0; + digits[i/(2*sizeof(ushort))] |= c<<(4*(i%(2*sizeof(ushort)))); + } + return len; + } + + void parse(const char *s) + { + len = parsedigits(digits, BI_DIGITS, s); + shrink(); + } + + void zero() { len = 0; } + + void print(stream *out) const + { + vector<char> buf; + printdigits(buf); + out->write(buf.getbuf(), buf.length()); + } + + void printdigits(vector<char> &buf) const + { + loopi(len) + { + digit d = digits[len-i-1]; + loopj(BI_DIGIT_BITS/4) + { + uint shift = BI_DIGIT_BITS - (j+1)*4; + int val = (d >> shift) & 0xF; + if(val < 10) buf.add('0' + val); + else buf.add('a' + val - 10); + } + } + } + + template<int Y_DIGITS> bigint &operator=(const bigint<Y_DIGITS> &y) + { + len = y.len; + memcpy(digits, y.digits, len*sizeof(digit)); + return *this; + } + + bool iszero() const { return !len; } + bool isone() const { return len==1 && digits[0]==1; } + + int numbits() const + { + if(!len) return 0; + int bits = len*BI_DIGIT_BITS; + digit last = digits[len-1], mask = 1<<(BI_DIGIT_BITS-1); + while(mask) + { + if(last&mask) return bits; + bits--; + mask >>= 1; + } + return 0; + } + + bool hasbit(int n) const { return n/BI_DIGIT_BITS < len && ((digits[n/BI_DIGIT_BITS]>>(n%BI_DIGIT_BITS))&1); } + + bool morebits(int n) const { return len > n/BI_DIGIT_BITS; } + + template<int X_DIGITS, int Y_DIGITS> bigint &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + dbldigit carry = 0; + int maxlen = max(x.len, y.len), i; + for(i = 0; i < y.len || carry; i++) + { + carry += (i < x.len ? (dbldigit)x.digits[i] : 0) + (i < y.len ? (dbldigit)y.digits[i] : 0); + digits[i] = (digit)carry; + carry >>= BI_DIGIT_BITS; + } + if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit)); + len = max(i, maxlen); + return *this; + } + template<int Y_DIGITS> bigint &add(const bigint<Y_DIGITS> &y) { return add(*this, y); } + + template<int X_DIGITS, int Y_DIGITS> bigint &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + ASSERT(x >= y); + dbldigit borrow = 0; + int i; + for(i = 0; i < y.len || borrow; i++) + { + borrow = (1<<BI_DIGIT_BITS) + (dbldigit)x.digits[i] - (i<y.len ? (dbldigit)y.digits[i] : 0) - borrow; + digits[i] = (digit)borrow; + borrow = (borrow>>BI_DIGIT_BITS)^1; + } + if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit)); + len = x.len; + shrink(); + return *this; + } + template<int Y_DIGITS> bigint &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); } + + void shrink() { while(len > 0 && !digits[len-1]) len--; } + void shrinkdigits(int n) { len = n; shrink(); } + void shrinkbits(int n) { shrinkdigits(n/BI_DIGIT_BITS); } + + template<int Y_DIGITS> void copyshrinkdigits(const bigint<Y_DIGITS> &y, int n) + { + len = clamp(y.len, 0, n); + memcpy(digits, y.digits, len*sizeof(digit)); + shrink(); + } + template<int Y_DIGITS> void copyshrinkbits(const bigint<Y_DIGITS> &y, int n) + { + copyshrinkdigits(y, n/BI_DIGIT_BITS); + } + + template<int X_DIGITS, int Y_DIGITS> bigint &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + if(!x.len || !y.len) { len = 0; return *this; } + memset(digits, 0, y.len*sizeof(digit)); + loopi(x.len) + { + dbldigit carry = 0; + loopj(y.len) + { + carry += (dbldigit)x.digits[i] * (dbldigit)y.digits[j] + (dbldigit)digits[i+j]; + digits[i+j] = (digit)carry; + carry >>= BI_DIGIT_BITS; + } + digits[i+y.len] = carry; + } + len = x.len + y.len; + shrink(); + return *this; + } + + bigint &rshift(int n) + { + assert(len <= BI_DIGITS); + if(!len || n<=0) return *this; + if(n >= len*BI_DIGIT_BITS) { len = 0; return *this; } + int dig = (n-1)/BI_DIGIT_BITS; + n = ((n-1) % BI_DIGIT_BITS)+1; + digit carry = digit(digits[dig]>>n); + for(int i = dig+1; i < len; i++) + { + digit tmp = digits[i]; + digits[i-dig-1] = digit((tmp<<(BI_DIGIT_BITS-n)) | carry); + carry = digit(tmp>>n); + } + digits[len-dig-1] = carry; + len -= dig + (n/BI_DIGIT_BITS); + shrink(); + return *this; + } + + bigint &lshift(int n) + { + if(!len || n<=0) return *this; + int dig = n/BI_DIGIT_BITS; + n %= BI_DIGIT_BITS; + digit carry = 0; + loopirev(len) + { + digit tmp = digits[i]; + digits[i+dig] = digit((tmp<<n) | carry); + carry = digit(tmp>>(BI_DIGIT_BITS-n)); + } + len += dig; + if(carry) digits[len++] = carry; + if(dig) memset(digits, 0, dig*sizeof(digit)); + return *this; + } + + void zerodigits(int i, int n) + { + memset(&digits[i], 0, n*sizeof(digit)); + } + void zerobits(int i, int n) + { + zerodigits(i/BI_DIGIT_BITS, n/BI_DIGIT_BITS); + } + + template<int Y_DIGITS> void copydigits(int to, const bigint<Y_DIGITS> &y, int from, int n) + { + int avail = clamp(y.len-from, 0, n); + memcpy(&digits[to], &y.digits[from], avail*sizeof(digit)); + if(avail < n) memset(&digits[to+avail], 0, (n-avail)*sizeof(digit)); + } + template<int Y_DIGITS> void copybits(int to, const bigint<Y_DIGITS> &y, int from, int n) + { + copydigits(to/BI_DIGIT_BITS, y, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS); + } + + void dupdigits(int to, int from, int n) + { + memcpy(&digits[to], &digits[from], n*sizeof(digit)); + } + void dupbits(int to, int from, int n) + { + dupdigits(to/BI_DIGIT_BITS, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS); + } + + template<int Y_DIGITS> bool operator==(const bigint<Y_DIGITS> &y) const + { + if(len!=y.len) return false; + loopirev(len) if(digits[i]!=y.digits[i]) return false; + return true; + } + template<int Y_DIGITS> bool operator!=(const bigint<Y_DIGITS> &y) const { return !(*this==y); } + template<int Y_DIGITS> bool operator<(const bigint<Y_DIGITS> &y) const + { + if(len<y.len) return true; + if(len>y.len) return false; + loopirev(len) + { + if(digits[i]<y.digits[i]) return true; + if(digits[i]>y.digits[i]) return false; + } + return false; + } + template<int Y_DIGITS> bool operator>(const bigint<Y_DIGITS> &y) const { return y<*this; } + template<int Y_DIGITS> bool operator<=(const bigint<Y_DIGITS> &y) const { return !(y<*this); } + template<int Y_DIGITS> bool operator>=(const bigint<Y_DIGITS> &y) const { return !(*this<y); } +}; + +#define GF_BITS 192 +#define GF_DIGITS ((GF_BITS+BI_DIGIT_BITS-1)/BI_DIGIT_BITS) + +typedef bigint<GF_DIGITS+1> gfint; + +/* NIST prime Galois fields. + * Currently only supports NIST P-192, where P=2^192-2^64-1, and P-256, where P=2^256-2^224+2^192+2^96-1. + */ +struct gfield : gfint +{ + static const gfield P; + + gfield() {} + gfield(digit n) : gfint(n) {} + gfield(const char *s) : gfint(s) {} + + template<int Y_DIGITS> gfield(const bigint<Y_DIGITS> &y) : gfint(y) {} + + template<int Y_DIGITS> gfield &operator=(const bigint<Y_DIGITS> &y) + { + gfint::operator=(y); + return *this; + } + + template<int X_DIGITS, int Y_DIGITS> gfield &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + gfint::add(x, y); + if(*this >= P) gfint::sub(*this, P); + return *this; + } + template<int Y_DIGITS> gfield &add(const bigint<Y_DIGITS> &y) { return add(*this, y); } + + template<int X_DIGITS> gfield &mul2(const bigint<X_DIGITS> &x) { return add(x, x); } + gfield &mul2() { return mul2(*this); } + + gfield &div2() + { + if(hasbit(0)) gfint::add(*this, P); + rshift(1); + return *this; + } + + template<int X_DIGITS, int Y_DIGITS> gfield &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + if(x < y) + { + gfint tmp; /* necessary if this==&y, using this instead would clobber y */ + tmp.add(x, P); + gfint::sub(tmp, y); + } + else gfint::sub(x, y); + return *this; + } + template<int Y_DIGITS> gfield &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); } + + template<int X_DIGITS> gfield &neg(const bigint<X_DIGITS> &x) + { + gfint::sub(P, x); + return *this; + } + gfield &neg() { return neg(*this); } + + template<int X_DIGITS> gfield &square(const bigint<X_DIGITS> &x) { return mul(x, x); } + gfield &square() { return square(*this); } + + template<int X_DIGITS, int Y_DIGITS> gfield &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + bigint<X_DIGITS+Y_DIGITS> result; + result.mul(x, y); + reduce(result); + return *this; + } + template<int Y_DIGITS> gfield &mul(const bigint<Y_DIGITS> &y) { return mul(*this, y); } + + template<int RESULT_DIGITS> void reduce(const bigint<RESULT_DIGITS> &result) + { +#if GF_BITS==192 + // B = T + S1 + S2 + S3 mod p + copyshrinkdigits(result, GF_DIGITS); // T + + if(result.morebits(192)) + { + gfield s; + s.copybits(0, result, 192, 64); + s.dupbits(64, 0, 64); + s.shrinkbits(128); + add(s); // S1 + + if(result.morebits(256)) + { + s.zerobits(0, 64); + s.copybits(64, result, 256, 64); + s.dupbits(128, 64, 64); + s.shrinkdigits(GF_DIGITS); + add(s); // S2 + + if(result.morebits(320)) + { + s.copybits(0, result, 320, 64); + s.dupbits(64, 0, 64); + s.dupbits(128, 0, 64); + s.shrinkdigits(GF_DIGITS); + add(s); // S3 + } + } + } + else if(*this >= P) gfint::sub(*this, P); +#elif GF_BITS==256 + // B = T + 2*S1 + 2*S2 + S3 + S4 - D1 - D2 - D3 - D4 mod p + copyshrinkdigits(result, GF_DIGITS); // T + + if(result.morebits(256)) + { + gfield s; + if(result.morebits(352)) + { + s.zerobits(0, 96); + s.copybits(96, result, 352, 160); + s.shrinkdigits(GF_DIGITS); + add(s); add(s); // S1 + + if(result.morebits(384)) + { + //s.zerobits(0, 96); + s.copybits(96, result, 384, 128); + s.shrinkbits(224); + add(s); add(s); // S2 + } + } + + s.copybits(0, result, 256, 96); + s.zerobits(96, 96); + s.copybits(192, result, 448, 64); + s.shrinkdigits(GF_DIGITS); + add(s); // S3 + + s.copybits(0, result, 288, 96); + s.copybits(96, result, 416, 96); + s.dupbits(192, 96, 32); + s.copybits(224, result, 256, 32); + s.shrinkdigits(GF_DIGITS); + add(s); // S4 + + s.copybits(0, result, 352, 96); + s.zerobits(96, 96); + s.copybits(192, result, 256, 32); + s.copybits(224, result, 320, 32); + s.shrinkdigits(GF_DIGITS); + sub(s); // D1 + + s.copybits(0, result, 384, 128); + //s.zerobits(128, 64); + s.copybits(192, result, 288, 32); + s.copybits(224, result, 352, 32); + s.shrinkdigits(GF_DIGITS); + sub(s); // D2 + + s.copybits(0, result, 416, 96); + s.copybits(96, result, 256, 96); + s.zerobits(192, 32); + s.copybits(224, result, 384, 32); + s.shrinkdigits(GF_DIGITS); + sub(s); // D3 + + s.copybits(0, result, 448, 64); + s.zerobits(64, 32); + s.copybits(96, result, 288, 96); + //s.zerobits(192, 32); + s.copybits(224, result, 416, 32); + s.shrinkdigits(GF_DIGITS); + sub(s); // D4 + } + else if(*this >= P) gfint::sub(*this, P); +#else +#error Unsupported GF +#endif + } + + template<int X_DIGITS, int Y_DIGITS> gfield &pow(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y) + { + gfield a(x); + if(y.hasbit(0)) *this = a; + else + { + len = 1; + digits[0] = 1; + if(!y.len) return *this; + } + for(int i = 1, j = y.numbits(); i < j; i++) + { + a.square(); + if(y.hasbit(i)) mul(a); + } + return *this; + } + template<int Y_DIGITS> gfield &pow(const bigint<Y_DIGITS> &y) { return pow(*this, y); } + + bool invert(const gfield &x) + { + if(!x.len) return false; + gfint u(x), v(P), A((gfint::digit)1), C((gfint::digit)0); + while(!u.iszero()) + { + int ushift = 0, ashift = 0; + while(!u.hasbit(ushift)) + { + ushift++; + if(A.hasbit(ashift)) + { + if(ashift) { A.rshift(ashift); ashift = 0; } + A.add(P); + } + ashift++; + } + if(ushift) u.rshift(ushift); + if(ashift) A.rshift(ashift); + int vshift = 0, cshift = 0; + while(!v.hasbit(vshift)) + { + vshift++; + if(C.hasbit(cshift)) + { + if(cshift) { C.rshift(cshift); cshift = 0; } + C.add(P); + } + cshift++; + } + if(vshift) v.rshift(vshift); + if(cshift) C.rshift(cshift); + if(u >= v) + { + u.sub(v); + if(A < C) A.add(P); + A.sub(C); + } + else + { + v.sub(v, u); + if(C < A) C.add(P); + C.sub(A); + } + } + if(C >= P) gfint::sub(C, P); + else { len = C.len; memcpy(digits, C.digits, len*sizeof(digit)); } + ASSERT(*this < P); + return true; + } + void invert() { invert(*this); } + + template<int X_DIGITS> static int legendre(const bigint<X_DIGITS> &x) + { + static const gfint Psub1div2(gfint(P).sub(bigint<1>(1)).rshift(1)); + gfield L; + L.pow(x, Psub1div2); + if(!L.len) return 0; + if(L.len==1) return 1; + return -1; + } + int legendre() const { return legendre(*this); } + + bool sqrt(const gfield &x) + { + if(!x.len) { len = 0; return true; } +#if GF_BITS==224 +#error Unsupported GF +#else + ASSERT((P.digits[0]%4)==3); + static const gfint Padd1div4(gfint(P).add(bigint<1>(1)).rshift(2)); + switch(legendre(x)) + { + case 0: len = 0; return true; + case -1: return false; + default: pow(x, Padd1div4); return true; + } +#endif + } + bool sqrt() { return sqrt(*this); } +}; + +struct ecjacobian +{ + static const gfield B; + static const ecjacobian base; + static const ecjacobian origin; + + gfield x, y, z; + + ecjacobian() {} + ecjacobian(const gfield &x, const gfield &y) : x(x), y(y), z(bigint<1>(1)) {} + ecjacobian(const gfield &x, const gfield &y, const gfield &z) : x(x), y(y), z(z) {} + + void mul2() + { + if(z.iszero()) return; + else if(y.iszero()) { *this = origin; return; } + gfield a, b, c, d; + d.sub(x, c.square(z)); + d.mul(c.add(x)); + c.mul2(d).add(d); + z.mul(y).add(z); + a.square(y); + b.mul2(a); + d.mul2(x).mul(b); + x.square(c).sub(d).sub(d); + a.square(b).add(a); + y.sub(d, x).mul(c).sub(a); + } + + void add(const ecjacobian &q) + { + if(q.z.iszero()) return; + else if(z.iszero()) { *this = q; return; } + gfield a, b, c, d, e, f; + a.square(z); + b.mul(q.y, a).mul(z); + a.mul(q.x); + if(q.z.isone()) + { + c.add(x, a); + d.add(y, b); + a.sub(x, a); + b.sub(y, b); + } + else + { + f.mul(y, e.square(q.z)).mul(q.z); + e.mul(x); + c.add(e, a); + d.add(f, b); + a.sub(e, a); + b.sub(f, b); + } + if(a.iszero()) { if(b.iszero()) mul2(); else *this = origin; return; } + if(!q.z.isone()) z.mul(q.z); + z.mul(a); + x.square(b).sub(f.mul(c, e.square(a))); + y.sub(f, x).sub(x).mul(b).sub(e.mul(a).mul(d)).div2(); + } + + template<int Q_DIGITS> void mul(const ecjacobian &p, const bigint<Q_DIGITS> &q) + { + *this = origin; + loopirev(q.numbits()) + { + mul2(); + if(q.hasbit(i)) add(p); + } + } + template<int Q_DIGITS> void mul(const bigint<Q_DIGITS> &q) { ecjacobian tmp(*this); mul(tmp, q); } + + void normalize() + { + if(z.iszero() || z.isone()) return; + gfield tmp; + z.invert(); + tmp.square(z); + x.mul(tmp); + y.mul(tmp).mul(z); + z = bigint<1>(1); + } + + bool calcy(bool ybit) + { + gfield y2, tmp; + y2.square(x).mul(x).sub(tmp.add(x, x).add(x)).add(B); + if(!y.sqrt(y2)) { y.zero(); return false; } + if(y.hasbit(0) != ybit) y.neg(); + return true; + } + + void print(vector<char> &buf) + { + normalize(); + buf.add(y.hasbit(0) ? '-' : '+'); + x.printdigits(buf); + } + + void parse(const char *s) + { + bool ybit = *s++ == '-'; + x.parse(s); + calcy(ybit); + z = bigint<1>(1); + } +}; + +const ecjacobian ecjacobian::origin(gfield((gfield::digit)1), gfield((gfield::digit)1), gfield((gfield::digit)0)); + +#if GF_BITS==192 +const gfield gfield::P("fffffffffffffffffffffffffffffffeffffffffffffffff"); +const gfield ecjacobian::B("64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1"); +const ecjacobian ecjacobian::base( + gfield("188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012"), + gfield("07192b95ffc8da78631011ed6b24cdd573f977a11e794811") +); +#elif GF_BITS==224 +const gfield gfield::P("ffffffffffffffffffffffffffffffff000000000000000000000001"); +const gfield ecjacobian::B("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"); +const ecjacobian ecjacobian::base( + gfield("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"), + gfield("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34") +); +#elif GF_BITS==256 +const gfield gfield::P("ffffffff00000001000000000000000000000000ffffffffffffffffffffffff"); +const gfield ecjacobian::B("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b"); +const ecjacobian ecjacobian::base( + gfield("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"), + gfield("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5") +); +#elif GF_BITS==384 +const gfield gfield::P("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff"); +const gfield ecjacobian::B("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"); +const ecjacobian ecjacobian::base( + gfield("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7"), + gfield("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f") +); +#elif GF_BITS==521 +const gfield gfield::P("1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); +const gfield ecjacobian::B("051953eb968e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00"); +const ecjacobian ecjacobian::base( + gfield("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66"), + gfield("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650") +); +#else +#error Unsupported GF +#endif + +void calcpubkey(gfint privkey, vector<char> &pubstr) +{ + ecjacobian c(ecjacobian::base); + c.mul(privkey); + c.normalize(); + c.print(pubstr); + pubstr.add('\0'); +} + +bool calcpubkey(const char *privstr, vector<char> &pubstr) +{ + if(!privstr[0]) return false; + gfint privkey; + privkey.parse(privstr); + calcpubkey(privkey, pubstr); + return true; +} + +void genprivkey(const char *seed, vector<char> &privstr, vector<char> &pubstr) +{ + tiger::hashval hash; + tiger::hash((const uchar *)seed, (int)strlen(seed), hash); + bigint<8*sizeof(hash.bytes)/BI_DIGIT_BITS> privkey; + memcpy(privkey.digits, hash.bytes, sizeof(hash.bytes)); + privkey.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS; + privkey.shrink(); + privkey.printdigits(privstr); + privstr.add('\0'); + + calcpubkey(privkey, pubstr); +} + +bool hashstring(const char *str, char *result, int maxlen) +{ + tiger::hashval hv; + if(maxlen < 2*(int)sizeof(hv.bytes) + 1) return false; + tiger::hash((uchar *)str, strlen(str), hv); + loopi(sizeof(hv.bytes)) + { + uchar c = hv.bytes[i]; + *result++ = "0123456789abcdef"[c&0xF]; + *result++ = "0123456789abcdef"[c>>4]; + } + *result = '\0'; + return true; +} + +void answerchallenge(const char *privstr, const char *challenge, vector<char> &answerstr) +{ + gfint privkey; + privkey.parse(privstr); + ecjacobian answer; + answer.parse(challenge); + answer.mul(privkey); + answer.normalize(); + answer.x.printdigits(answerstr); + answerstr.add('\0'); +} + +void *parsepubkey(const char *pubstr) +{ + ecjacobian *pubkey = new ecjacobian; + pubkey->parse(pubstr); + return pubkey; +} + +void freepubkey(void *pubkey) +{ + delete (ecjacobian *)pubkey; +} + +void *genchallenge(void *pubkey, const void *seed, int seedlen, vector<char> &challengestr) +{ + tiger::hashval hash; + tiger::hash((const uchar *)seed, seedlen, hash); + gfint challenge; + memcpy(challenge.digits, hash.bytes, sizeof(hash.bytes)); + challenge.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS; + challenge.shrink(); + + ecjacobian answer(*(ecjacobian *)pubkey); + answer.mul(challenge); + answer.normalize(); + + ecjacobian secret(ecjacobian::base); + secret.mul(challenge); + secret.normalize(); + + secret.print(challengestr); + challengestr.add('\0'); + + return new gfield(answer.x); +} + +void freechallenge(void *answer) +{ + delete (gfint *)answer; +} + +bool checkchallenge(const char *answerstr, void *correct) +{ + gfint answer(answerstr); + return answer == *(gfint *)correct; +} + |
