diff options
| author | xolatile | 2025-08-06 22:54:55 +0200 |
|---|---|---|
| committer | xolatile | 2025-08-06 22:54:55 +0200 |
| commit | 0a1172b75f571685c264a8b9d8ee224bbf11381f (patch) | |
| tree | d041fdc68a60f0ebb48a3852bbcce6d9432f83d5 /src/shared/geom.h | |
| parent | affde05dc07a94643f1fd2751b2b441f57f73d7d (diff) | |
| download | xolatile-badassbug-0a1172b75f571685c264a8b9d8ee224bbf11381f.tar.xz xolatile-badassbug-0a1172b75f571685c264a8b9d8ee224bbf11381f.tar.zst | |
Please do not hate me, it makes sense...
Diffstat (limited to 'src/shared/geom.h')
| -rw-r--r-- | src/shared/geom.h | 884 |
1 files changed, 244 insertions, 640 deletions
diff --git a/src/shared/geom.h b/src/shared/geom.h index a0ef7c8..745ff37 100644 --- a/src/shared/geom.h +++ b/src/shared/geom.h @@ -1,48 +1,41 @@ struct vec; struct vec4; -struct vec2 -{ - union - { +struct vec2 { + union { struct { float x, y; }; float v[2]; }; - vec2() {} vec2(float x, float y) : x(x), y(y) {} explicit vec2(const vec &v); explicit vec2(const vec4 &v); - - float &operator[](int i) { return v[i]; } + float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } - bool operator==(const vec2 &o) const { return x == o.x && y == o.y; } bool operator!=(const vec2 &o) const { return x != o.x || y != o.y; } - bool iszero() const { return x==0 && y==0; } - float dot(const vec2 &o) const { return x*o.x + y*o.y; } + float dot(const vec2 &o) const { return x*o.x + y*o.y; } float squaredlen() const { return dot(*this); } - float magnitude() const { return sqrtf(squaredlen()); } + float magnitude() const { return sqrtf(squaredlen()); } vec2 &normalize() { mul(1/magnitude()); return *this; } vec2 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } float cross(const vec2 &o) const { return x*o.y - y*o.x; } - - vec2 &mul(float f) { x *= f; y *= f; return *this; } + vec2 &mul(float f) { x *= f; y *= f; return *this; } vec2 &mul(const vec2 &o) { x *= o.x; y *= o.y; return *this; } - vec2 &square() { mul(*this); return *this; } - vec2 &div(float f) { x /= f; y /= f; return *this; } + vec2 &square() { mul(*this); return *this; } + vec2 &div(float f) { x /= f; y /= f; return *this; } vec2 &div(const vec2 &o) { x /= o.x; y /= o.y; return *this; } vec2 &recip() { x = 1/x; y = 1/y; return *this; } - vec2 &add(float f) { x += f; y += f; return *this; } + vec2 &add(float f) { x += f; y += f; return *this; } vec2 &add(const vec2 &o) { x += o.x; y += o.y; return *this; } - vec2 &sub(float f) { x -= f; y -= f; return *this; } + vec2 &sub(float f) { x -= f; y -= f; return *this; } vec2 &sub(const vec2 &o) { x -= o.x; y -= o.y; return *this; } - vec2 &neg() { x = -x; y = -y; return *this; } + vec2 &neg() { x = -x; y = -y; return *this; } vec2 &min(const vec2 &o) { x = ::min(x, o.x); y = ::min(y, o.y); return *this; } vec2 &max(const vec2 &o) { x = ::max(x, o.x); y = ::max(y, o.y); return *this; } - vec2 &min(float f) { x = ::min(x, f); y = ::min(y, f); return *this; } - vec2 &max(float f) { x = ::max(x, f); y = ::max(y, f); return *this; } + vec2 &min(float f) { x = ::min(x, f); y = ::min(y, f); return *this; } + vec2 &max(float f) { x = ::max(x, f); y = ::max(y, f); return *this; } vec2 &abs() { x = fabs(x); y = fabs(y); return *this; } vec2 &clamp(float l, float h) { x = ::clamp(x, l, h); y = ::clamp(y, l, h); return *this; } vec2 &reflect(const vec2 &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; return *this; } @@ -52,13 +45,11 @@ struct vec2 template<class B> vec2 &msub(const vec2 &a, const B &b) { return sub(vec2(a).mul(b)); } }; -static inline bool htcmp(const vec2 &x, const vec2 &y) -{ +static inline bool htcmp(const vec2 &x, const vec2 &y) { return x == y; } -static inline uint hthash(const vec2 &k) -{ +static inline uint hthash(const vec2 &k) { union { uint i; float f; } x, y; x.f = k.x; y.f = k.y; uint v = x.i^y.i; @@ -67,15 +58,12 @@ static inline uint hthash(const vec2 &k) struct ivec; -struct vec -{ - union - { +struct vec { + union { struct { float x, y, z; }; struct { float r, g, b; }; float v[3]; }; - vec() {} explicit vec(int a) : x(a), y(a), z(a) {} explicit vec(float a) : x(a), y(a), z(a) {} @@ -85,50 +73,45 @@ struct vec explicit vec(const vec2 &v, float z = 0) : x(v.x), y(v.y), z(z) {} explicit vec(const vec4 &v); explicit vec(const ivec &v); - vec(float yaw, float pitch) : x(-sinf(yaw)*cosf(pitch)), y(cosf(yaw)*cosf(pitch)), z(sinf(pitch)) {} - - float &operator[](int i) { return v[i]; } + float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } - vec &set(int i, float f) { v[i] = f; return *this; } - bool operator==(const vec &o) const { return x == o.x && y == o.y && z == o.z; } bool operator!=(const vec &o) const { return x != o.x || y != o.y || z != o.z; } - bool iszero() const { return x==0 && y==0 && z==0; } float squaredlen() const { return x*x + y*y + z*z; } template<class T> float dot2(const T &o) const { return x*o.x + y*o.y; } float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z; } float absdot(const vec &o) const { return fabs(x*o.x) + fabs(y*o.y) + fabs(z*o.z); } vec &pow(float f) { x = ::pow(x, f); y = ::pow(y, f); z = ::pow(z, f); return *this; } - vec &exp() { x = ::exp(x); y = ::exp(y); z = ::exp(z); return *this; } - vec &exp2() { x = ::exp2(x); y = ::exp2(y); z = ::exp2(z); return *this; } - vec &sqrt() { x = sqrtf(x); y = sqrtf(y); z = sqrtf(z); return *this; } - vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; } + vec &exp() { x = ::exp(x); y = ::exp(y); z = ::exp(z); return *this; } + vec &exp2() { x = ::exp2(x); y = ::exp2(y); z = ::exp2(z); return *this; } + vec &sqrt() { x = sqrtf(x); y = sqrtf(y); z = sqrtf(z); return *this; } + vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; } vec &mul(float f) { x *= f; y *= f; z *= f; return *this; } vec &square() { mul(*this); return *this; } - vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; } + vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; } vec &div(float f) { x /= f; y /= f; z /= f; return *this; } vec &recip() { x = 1/x; y = 1/y; z = 1/z; return *this; } - vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; } + vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; } vec &add(float f) { x += f; y += f; z += f; return *this; } - vec &add2(float f) { x += f; y += f; return *this; } - vec &addz(float f) { z += f; return *this; } - vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; } + vec &add2(float f) { x += f; y += f; return *this; } + vec &addz(float f) { z += f; return *this; } + vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; } vec &sub(float f) { x -= f; y -= f; z -= f; return *this; } - vec &sub2(float f) { x -= f; y -= f; return *this; } - vec &subz(float f) { z -= f; return *this; } - vec &neg2() { x = -x; y = -y; return *this; } - vec &neg() { x = -x; y = -y; z = -z; return *this; } - vec &min(const vec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; } - vec &max(const vec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; } + vec &sub2(float f) { x -= f; y -= f; return *this; } + vec &subz(float f) { z -= f; return *this; } + vec &neg2() { x = -x; y = -y; return *this; } + vec &neg() { x = -x; y = -y; z = -z; return *this; } + vec &min(const vec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; } + vec &max(const vec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; } vec &min(float f) { x = ::min(x, f); y = ::min(y, f); z = ::min(z, f); return *this; } vec &max(float f) { x = ::max(x, f); y = ::max(y, f); z = ::max(z, f); return *this; } vec &clamp(float f, float h) { x = ::clamp(x, f, h); y = ::clamp(y, f, h); z = ::clamp(z, f, h); return *this; } vec &abs() { x = fabs(x); y = fabs(y); z = fabs(z); return *this; } float magnitude2() const { return sqrtf(dot2(*this)); } - float magnitude() const { return sqrtf(squaredlen()); } + float magnitude() const { return sqrtf(squaredlen()); } vec &normalize() { div(magnitude()); return *this; } vec &safenormalize() { float m = magnitude(); if(m) div(m); return *this; } bool isnormalized() const { float m = squaredlen(); return (m>0.99f && m<1.01f); } @@ -145,15 +128,13 @@ struct vec vec &reflect(const vec &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } vec &project(const vec &n) { float k = dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; } vec &projectxydir(const vec &n) { if(n.z) z = -(x*n.x/n.z + y*n.y/n.z); return *this; } - vec &projectxy(const vec &n) - { + vec &projectxy(const vec &n) { float m = squaredlen(), k = dot(n); projectxydir(n); rescale(sqrtf(::max(m - k*k, 0.0f))); return *this; } - vec &projectxy(const vec &n, float threshold) - { + vec &projectxy(const vec &n, float threshold) { float m = squaredlen(), k = ::min(dot(n), threshold); projectxydir(n); rescale(sqrtf(::max(m - k*k, 0.0f))); @@ -163,28 +144,21 @@ struct vec vec &lerp(const vec &a, const vec &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; z = a.z + (b.z-a.z)*t; return *this; } template<class B> vec &madd(const vec &a, const B &b) { return add(vec(a).mul(b)); } template<class B> vec &msub(const vec &a, const B &b) { return sub(vec(a).mul(b)); } - - vec &rescale(float k) - { + vec &rescale(float k) { float mag = magnitude(); if(mag > 1e-6f) mul(k / mag); return *this; } - vec &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } vec &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } vec &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; } - vec &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } vec &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } vec &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } - vec &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); } vec &rotate_around_x(const vec2 &sc) { return rotate_around_x(sc.x, sc.y); } vec &rotate_around_y(const vec2 &sc) { return rotate_around_y(sc.x, sc.y); } - - vec &rotate(float c, float s, const vec &d) - { + vec &rotate(float c, float s, const vec &d) { *this = vec(x*(d.x*d.x*(1-c)+c) + y*(d.x*d.y*(1-c)-d.z*s) + z*(d.x*d.z*(1-c)+d.y*s), x*(d.y*d.x*(1-c)+d.z*s) + y*(d.y*d.y*(1-c)+c) + z*(d.y*d.z*(1-c)-d.x*s), x*(d.x*d.z*(1-c)-d.y*s) + y*(d.y*d.z*(1-c)+d.x*s) + z*(d.z*d.z*(1-c)+c)); @@ -192,49 +166,34 @@ struct vec } vec &rotate(float angle, const vec &d) { return rotate(cosf(angle), sinf(angle), d); } vec &rotate(const vec2 &sc, const vec &d) { return rotate(sc.x, sc.y, d); } - - void orthogonal(const vec &d) - { + void orthogonal(const vec &d) { *this = fabs(d.x) > fabs(d.z) ? vec(-d.y, d.x, 0) : vec(0, -d.z, d.y); } - - void orthonormalize(vec &s, vec &t) const - { + void orthonormalize(vec &s, vec &t) const { s.sub(vec(*this).mul(dot(s))); t.sub(vec(*this).mul(dot(t))) .sub(vec(s).mul(s.dot(t))); } - template<class T> - bool insidebb(const T &bbmin, const T &bbmax) const - { + bool insidebb(const T &bbmin, const T &bbmax) const { return x >= bbmin.x && x <= bbmax.x && y >= bbmin.y && y <= bbmax.y && z >= bbmin.z && z <= bbmax.z; } - template<class T, class U> - bool insidebb(const T &o, U size) const - { + bool insidebb(const T &o, U size) const { return x >= o.x && x <= o.x + size && y >= o.y && y <= o.y + size && z >= o.z && z <= o.z + size; } - - template<class T> float dist_to_bb(const T &min, const T &max) const - { + template<class T> float dist_to_bb(const T &min, const T &max) const { float sqrdist = 0; - loopi(3) - { + loopi(3) { if (v[i] < min[i]) { float delta = v[i]-min[i]; sqrdist += delta*delta; } else if(v[i] > max[i]) { float delta = max[i]-v[i]; sqrdist += delta*delta; } } return sqrtf(sqrdist); } - - template<class T, class S> float dist_to_bb(const T &o, S size) const - { + template<class T, class S> float dist_to_bb(const T &o, S size) const { return dist_to_bb(o, T(o).add(size)); } - - static vec hexcolor(int color) - { + static vec hexcolor(int color) { return vec(((color>>16)&0xFF)*(1.0f/255.0f), ((color>>8)&0xFF)*(1.0f/255.0f), (color&0xFF)*(1.0f/255.0f)); } int tohexcolor() const { return (int(::clamp(r, 0.0f, 1.0f)*255)<<16)|(int(::clamp(g, 0.0f, 1.0f)*255)<<8)|int(::clamp(b, 0.0f, 1.0f)*255); } @@ -242,85 +201,71 @@ struct vec inline vec2::vec2(const vec &v) : x(v.x), y(v.y) {} -static inline bool htcmp(const vec &x, const vec &y) -{ +static inline bool htcmp(const vec &x, const vec &y) { return x == y; } -static inline uint hthash(const vec &k) -{ +static inline uint hthash(const vec &k) { union { uint i; float f; } x, y, z; x.f = k.x; y.f = k.y; z.f = k.z; uint v = x.i^y.i^z.i; return v + (v>>12); } -struct vec4 -{ - union - { +struct vec4 { + union { struct { float x, y, z, w; }; struct { float r, g, b, a; }; float v[4]; }; - vec4() {} explicit vec4(const vec &p, float w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} explicit vec4(const float *v) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {} - - float &operator[](int i) { return v[i]; } + float &operator[](int i) { return v[i]; } float operator[](int i) const { return v[i]; } - template<class T> float dot3(const T &o) const { return x*o.x + y*o.y + z*o.z; } float dot(const vec4 &o) const { return dot3(o) + w*o.w; } - float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; } + float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; } float squaredlen() const { return dot(*this); } - float magnitude() const { return sqrtf(squaredlen()); } + float magnitude() const { return sqrtf(squaredlen()); } float magnitude3() const { return sqrtf(dot3(*this)); } vec4 &normalize() { mul(1/magnitude()); return *this; } vec4 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; } - - vec4 &lerp(const vec4 &b, float t) - { + vec4 &lerp(const vec4 &b, float t) { x += (b.x-x)*t; y += (b.y-y)*t; z += (b.z-z)*t; w += (b.w-w)*t; return *this; } - vec4 &lerp(const vec4 &a, const vec4 &b, float t) - { + vec4 &lerp(const vec4 &a, const vec4 &b, float t) { x = a.x+(b.x-a.x)*t; y = a.y+(b.y-a.y)*t; z = a.z+(b.z-a.z)*t; w = a.w+(b.w-a.w)*t; return *this; } - - vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; } - vec4 &mul(float f) { mul3(f); w *= f; return *this; } + vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; } + vec4 &mul(float f) { mul3(f); w *= f; return *this; } vec4 &mul(const vec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } - vec4 &square() { mul(*this); return *this; } - vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; } - vec4 &div(float f) { div3(f); w /= f; return *this; } + vec4 &square() { mul(*this); return *this; } + vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; } + vec4 &div(float f) { div3(f); w /= f; return *this; } vec4 &div(const vec4 &o) { x /= o.x; y /= o.y; z /= o.z; w /= o.w; return *this; } vec4 &recip() { x = 1/x; y = 1/y; z = 1/z; w = 1/w; return *this; } vec4 &add(const vec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } - vec4 &addw(float f) { w += f; return *this; } + vec4 &addw(float f) { w += f; return *this; } vec4 &sub(const vec4 &o) { x -= o.x; y -= o.y; z -= o.z; w -= o.w; return *this; } - vec4 &subw(float f) { w -= f; return *this; } + vec4 &subw(float f) { w -= f; return *this; } vec4 &neg3() { x = -x; y = -y; z = -z; return *this; } - vec4 &neg() { neg3(); w = -w; return *this; } + vec4 &neg() { neg3(); w = -w; return *this; } template<class B> vec4 &madd(const vec4 &a, const B &b) { return add(vec4(a).mul(b)); } template<class B> vec4 &msub(const vec4 &a, const B &b) { return sub(vec4(a).mul(b)); } - void setxyz(const vec &v) { x = v.x; y = v.y; z = v.z; } - vec4 &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; } vec4 &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; } vec4 &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; } - vec4 &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); } vec4 &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); } vec4 &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); } @@ -332,20 +277,17 @@ struct matrix3; struct matrix4x3; struct matrix4; -struct quat : vec4 -{ +struct quat : vec4 { quat() {} quat(float x, float y, float z, float w) : vec4(x, y, z, w) {} - quat(const vec &axis, float angle) - { + quat(const vec &axis, float angle) { w = cosf(angle/2); float s = sinf(angle/2); x = s*axis.x; y = s*axis.y; z = s*axis.z; } - explicit quat(const vec &v) - { + explicit quat(const vec &v) { x = v.x; y = v.y; z = v.z; @@ -354,15 +296,11 @@ struct quat : vec4 explicit quat(const matrix3 &m) { convertmatrix(m); } explicit quat(const matrix4x3 &m) { convertmatrix(m); } explicit quat(const matrix4 &m) { convertmatrix(m); } - void restorew() { w = 1.0f-x*x-y*y-z*z; w = w<0 ? 0 : -sqrtf(w); } - quat &add(const vec4 &o) { vec4::add(o); return *this; } quat &sub(const vec4 &o) { vec4::sub(o); return *this; } quat &mul(float k) { vec4::mul(k); return *this; } - - quat &mul(const quat &p, const quat &o) - { + quat &mul(const quat &p, const quat &o) { x = p.w*o.x + p.x*o.w + p.y*o.z - p.z*o.y; y = p.w*o.y - p.x*o.z + p.y*o.w + p.z*o.x; z = p.w*o.z + p.x*o.y - p.y*o.x + p.z*o.w; @@ -370,60 +308,46 @@ struct quat : vec4 return *this; } quat &mul(const quat &o) { return mul(quat(*this), o); } - quat &invert() { neg3(); return *this; } - - void calcangleaxis(float &angle, vec &axis) - { + void calcangleaxis(float &angle, vec &axis) { float rr = dot3(*this); - if(rr>0) - { + if(rr>0) { angle = 2*acosf(w); axis = vec(x, y, z).mul(1/rr); } else { angle = 0; axis = vec(0, 0, 1); } } - - vec rotate(const vec &v) const - { + vec rotate(const vec &v) const { return vec().cross(*this, vec().cross(*this, v).add(vec(v).mul(w))).mul(2).add(v); } - - vec invertedrotate(const vec &v) const - { + vec invertedrotate(const vec &v) const { return vec().cross(*this, vec().cross(*this, v).sub(vec(v).mul(w))).mul(2).add(v); } - template<class M> - void convertmatrix(const M &m) - { + void convertmatrix(const M &m) { float trace = m.a.x + m.b.y + m.c.z; - if(trace>0) - { + if(trace>0) { float r = sqrtf(1 + trace), inv = 0.5f/r; w = 0.5f*r; x = (m.b.z - m.c.y)*inv; y = (m.c.x - m.a.z)*inv; z = (m.a.y - m.b.x)*inv; } - else if(m.a.x > m.b.y && m.a.x > m.c.z) - { + else if(m.a.x > m.b.y && m.a.x > m.c.z) { float r = sqrtf(1 + m.a.x - m.b.y - m.c.z), inv = 0.5f/r; x = 0.5f*r; y = (m.a.y + m.b.x)*inv; z = (m.c.x + m.a.z)*inv; w = (m.b.z - m.c.y)*inv; } - else if(m.b.y > m.c.z) - { + else if(m.b.y > m.c.z) { float r = sqrtf(1 + m.b.y - m.a.x - m.c.z), inv = 0.5f/r; x = (m.a.y + m.b.x)*inv; y = 0.5f*r; z = (m.b.z + m.c.y)*inv; w = (m.c.x - m.a.z)*inv; } - else - { + else { float r = sqrtf(1 + m.c.z - m.a.x - m.b.y), inv = 0.5f/r; x = (m.c.x + m.a.z)*inv; y = (m.b.z + m.c.y)*inv; @@ -433,147 +357,105 @@ struct quat : vec4 } }; -struct dualquat -{ +struct dualquat { quat real, dual; - dualquat() {} dualquat(const quat &q, const vec &p) : real(q), dual(0.5f*( p.x*q.w + p.y*q.z - p.z*q.y), 0.5f*(-p.x*q.z + p.y*q.w + p.z*q.x), 0.5f*( p.x*q.y - p.y*q.x + p.z*q.w), - -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z)) - { + -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z)) { } explicit dualquat(const quat &q) : real(q), dual(0, 0, 0, 0) {} explicit dualquat(const matrix4x3 &m); - dualquat &mul(float k) { real.mul(k); dual.mul(k); return *this; } dualquat &add(const dualquat &d) { real.add(d.real); dual.add(d.dual); return *this; } - - dualquat &lerp(const dualquat &to, float t) - { + dualquat &lerp(const dualquat &to, float t) { float k = real.dot(to.real) < 0 ? -t : t; real.mul(1-t).add(vec4(to.real).mul(k)); dual.mul(1-t).add(vec4(to.dual).mul(k)); return *this; } - dualquat &lerp(const dualquat &from, const dualquat &to, float t) - { + dualquat &lerp(const dualquat &from, const dualquat &to, float t) { float k = from.real.dot(to.real) < 0 ? -t : t; (real = from.real).mul(1-t).add(vec4(to.real).mul(k)); (dual = from.dual).mul(1-t).add(vec4(to.dual).mul(k)); return *this; } - - dualquat &invert() - { + dualquat &invert() { real.invert(); dual.invert(); dual.sub(quat(real).mul(2*real.dot(dual))); return *this; } - - void mul(const dualquat &p, const dualquat &o) - { + void mul(const dualquat &p, const dualquat &o) { real.mul(p.real, o.real); dual.mul(p.real, o.dual).add(quat().mul(p.dual, o.real)); } void mul(const dualquat &o) { mul(dualquat(*this), o); } - - void mulorient(const quat &q) - { + void mulorient(const quat &q) { real.mul(q, quat(real)); dual.mul(quat(q).invert(), quat(dual)); } - - void mulorient(const quat &q, const dualquat &base) - { + void mulorient(const quat &q, const dualquat &base) { quat trans; trans.mul(base.dual, quat(base.real).invert()); dual.mul(quat(q).invert(), quat(real).mul(trans).add(dual)); - real.mul(q, quat(real)); dual.add(quat().mul(real, trans.invert())).sub(quat(real).mul(2*base.real.dot(base.dual))); } - - void normalize() - { + void normalize() { float invlen = 1/real.magnitude(); real.mul(invlen); dual.mul(invlen); } - - void translate(const vec &p) - { + void translate(const vec &p) { dual.x += 0.5f*( p.x*real.w + p.y*real.z - p.z*real.y); dual.y += 0.5f*(-p.x*real.z + p.y*real.w + p.z*real.x); dual.z += 0.5f*( p.x*real.y - p.y*real.x + p.z*real.w); dual.w += -0.5f*( p.x*real.x + p.y*real.y + p.z*real.z); } - - void scale(float k) - { + void scale(float k) { dual.mul(k); } - - void fixantipodal(const dualquat &d) - { - if(real.dot(d.real) < 0) - { + void fixantipodal(const dualquat &d) { + if(real.dot(d.real) < 0) { real.neg(); dual.neg(); } } - - void accumulate(const dualquat &d, float k) - { + void accumulate(const dualquat &d, float k) { if(real.dot(d.real) < 0) k = -k; real.add(vec4(d.real).mul(k)); dual.add(vec4(d.dual).mul(k)); } - - vec transform(const vec &v) const - { + vec transform(const vec &v) const { return vec().cross(real, vec().cross(real, v).add(vec(v).mul(real.w)).add(vec(dual))).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2).add(v); } - - quat transform(const quat &q) const - { + quat transform(const quat &q) const { return quat().mul(real, q); } - - vec transposedtransform(const vec &v) const - { + vec transposedtransform(const vec &v) const { return dualquat(*this).invert().transform(v); } - - vec transformnormal(const vec &v) const - { + vec transformnormal(const vec &v) const { return real.rotate(v); } - - vec transposedtransformnormal(const vec &v) const - { + vec transposedtransformnormal(const vec &v) const { return real.invertedrotate(v); } - - vec gettranslation() const - { + vec gettranslation() const { return vec().cross(real, dual).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2); } }; -struct matrix3 -{ +struct matrix3 { vec a, b, c; - matrix3() {} matrix3(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} explicit matrix3(float angle, const vec &axis) { rotate(angle, axis); } - explicit matrix3(const quat &q) - { + explicit matrix3(const quat &q) { float x = q.x, y = q.y, z = q.z, w = q.w, tx = 2*x, ty = 2*y, tz = 2*z, txx = tx*x, tyy = ty*y, tzz = tz*z, @@ -585,47 +467,35 @@ struct matrix3 } explicit matrix3(const matrix4x3 &m); explicit matrix3(const matrix4 &m); - - void mul(const matrix3 &m, const matrix3 &n) - { + void mul(const matrix3 &m, const matrix3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); } void mul(const matrix3 &n) { mul(matrix3(*this), n); } - - void multranspose(const matrix3 &m, const matrix3 &n) - { + void multranspose(const matrix3 &m, const matrix3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); } void multranspose(const matrix3 &n) { multranspose(matrix3(*this), n); } - - void transposemul(const matrix3 &m, const matrix3 &n) - { + void transposemul(const matrix3 &m, const matrix3 &n) { a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); } void transposemul(const matrix3 &n) { transposemul(matrix3(*this), n); } - - void transpose() - { + void transpose() { swap(a.y, b.x); swap(a.z, c.x); swap(b.z, c.y); } - template<class M> - void transpose(const M &m) - { + void transpose(const M &m) { a = vec(m.a.x, m.b.x, m.c.x); b = vec(m.a.y, m.b.y, m.c.y); c = vec(m.a.z, m.b.z, m.c.z); } - - void invert(const matrix3 &o) - { + void invert(const matrix3 &o) { vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); transpose(o); a.mul(unscale); @@ -633,53 +503,36 @@ struct matrix3 c.mul(unscale); } void invert() { invert(matrix3(*this)); } - - void normalize() - { + void normalize() { a.normalize(); b.normalize(); c.normalize(); } - - void scale(float k) - { + void scale(float k) { a.mul(k); b.mul(k); c.mul(k); } - - void rotate(float angle, const vec &axis) - { + void rotate(float angle, const vec &axis) { rotate(cosf(angle), sinf(angle), axis); } - - void rotate(float ck, float sk, const vec &axis) - { + void rotate(float ck, float sk, const vec &axis) { a = vec(axis.x*axis.x*(1-ck)+ck, axis.x*axis.y*(1-ck)+axis.z*sk, axis.x*axis.z*(1-ck)-axis.y*sk); b = vec(axis.x*axis.y*(1-ck)-axis.z*sk, axis.y*axis.y*(1-ck)+ck, axis.y*axis.z*(1-ck)+axis.x*sk); c = vec(axis.x*axis.z*(1-ck)+axis.y*sk, axis.y*axis.z*(1-ck)-axis.x*sk, axis.z*axis.z*(1-ck)+ck); } - - void setyaw(float ck, float sk) - { + void setyaw(float ck, float sk) { a = vec(ck, sk, 0); b = vec(-sk, ck, 0); c = vec(0, 0, 1); } - - void setyaw(float angle) - { + void setyaw(float angle) { setyaw(cosf(angle), sinf(angle)); } - float trace() const { return a.x + b.y + c.z; } - - bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const - { - if(tr <= -1) - { - if(a.x >= b.y && a.x >= c.z) - { + bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const { + if(tr <= -1) { + if(a.x >= b.y && a.x >= c.z) { float r = 1 + a.x - b.y - c.z; if(r <= threshold) return false; r = sqrtf(r); @@ -687,8 +540,7 @@ struct matrix3 axis.y = b.x/r; axis.z = c.x/r; } - else if(b.y >= c.z) - { + else if(b.y >= c.z) { float r = 1 + b.y - a.x - c.z; if(r <= threshold) return false; r = sqrtf(r); @@ -696,8 +548,7 @@ struct matrix3 axis.x = b.x/r; axis.z = c.y/r; } - else - { + else { float r = 1 + b.y - a.x - c.z; if(r <= threshold) return false; r = sqrtf(r); @@ -707,13 +558,11 @@ struct matrix3 } angle = M_PI; } - else if(tr >= 3) - { + else if(tr >= 3) { axis = vec(0, 0, 1); angle = 0; } - else - { + else { axis = vec(b.z - c.y, c.x - a.z, a.y - b.x); float r = axis.squaredlen(); if(r <= threshold) return false; @@ -722,32 +571,23 @@ struct matrix3 } return true; } - bool calcangleaxis(float &angle, vec &axis, float threshold = 1e-16f) const { return calcangleaxis(trace(), angle, axis, threshold); } - - vec transform(const vec &o) const - { + vec transform(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransform(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } - vec abstransform(const vec &o) const - { + vec abstransform(const vec &o) const { return vec(a).mul(o.x).abs().add(vec(b).mul(o.y).abs()).add(vec(c).mul(o.z).abs()); } - vec abstransposedtransform(const vec &o) const - { + vec abstransposedtransform(const vec &o) const { return vec(a.absdot(o), b.absdot(o), c.absdot(o)); } - - void identity() - { + void identity() { a = vec(1, 0, 0); b = vec(0, 1, 0); c = vec(0, 0, 1); } - - void rotate_around_x(float ck, float sk) - { + void rotate_around_x(float ck, float sk) { vec rb = vec(b).mul(ck).madd(c, sk), rc = vec(c).mul(ck).msub(b, sk); b = rb; @@ -755,9 +595,7 @@ struct matrix3 } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } - - void rotate_around_y(float ck, float sk) - { + void rotate_around_y(float ck, float sk) { vec rc = vec(c).mul(ck).madd(a, sk), ra = vec(a).mul(ck).msub(c, sk); c = rc; @@ -765,9 +603,7 @@ struct matrix3 } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } - - void rotate_around_z(float ck, float sk) - { + void rotate_around_z(float ck, float sk) { vec ra = vec(a).mul(ck).madd(b, sk), rb = vec(b).mul(ck).msub(a, sk); a = ra; @@ -775,24 +611,19 @@ struct matrix3 } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } - vec transform(const vec2 &o) { return vec(a).mul(o.x).madd(b, o.y); } vec transposedtransform(const vec2 &o) const { return vec(a.dot2(o), b.dot2(o), c.dot2(o)); } - vec rowx() const { return vec(a.x, b.x, c.x); } vec rowy() const { return vec(a.y, b.y, c.y); } vec rowz() const { return vec(a.z, b.z, c.z); } }; -struct matrix4x3 -{ +struct matrix4x3 { vec a, b, c, d; - matrix4x3() {} matrix4x3(const vec &a, const vec &b, const vec &c, const vec &d) : a(a), b(b), c(c), d(d) {} matrix4x3(const matrix3 &rot, const vec &trans) : a(rot.a), b(rot.b), c(rot.c), d(trans) {} - matrix4x3(const dualquat &dq) - { + matrix4x3(const dualquat &dq) { vec4 r = vec4(dq.real).mul(1/dq.real.squaredlen()), rr = vec4(r).mul(dq.real); r.mul(2); float xy = r.x*dq.real.y, xz = r.x*dq.real.z, yz = r.y*dq.real.z, @@ -803,138 +634,104 @@ struct matrix4x3 d = vec(-(dq.dual.w*r.x - dq.dual.x*r.w + dq.dual.y*r.z - dq.dual.z*r.y), -(dq.dual.w*r.y - dq.dual.x*r.z - dq.dual.y*r.w + dq.dual.z*r.x), -(dq.dual.w*r.z + dq.dual.x*r.y - dq.dual.y*r.x - dq.dual.z*r.w)); - } explicit matrix4x3(const matrix4 &m); - - void mul(float k) - { + void mul(float k) { a.mul(k); b.mul(k); c.mul(k); d.mul(k); } - void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } void setscale(const vec &v) { setscale(v.x, v.y, v.z); } void setscale(float n) { setscale(n, n, n); } - - void scale(float x, float y, float z) - { + void scale(float x, float y, float z) { a.mul(x); b.mul(y); c.mul(z); } void scale(const vec &v) { scale(v.x, v.y, v.z); } void scale(float n) { scale(n, n, n); } - void settranslation(const vec &p) { d = p; } void settranslation(float x, float y, float z) { d = vec(x, y, z); } - void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } void translate(float x, float y, float z) { translate(vec(x, y, z)); } void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } - void posttranslate(const vec &p) { d.add(p); } void posttranslate(float x, float y, float z) { posttranslate(vec(x, y, z)); } void posttranslate(const vec &p, float scale) { d.madd(p, scale); } - - void accumulate(const matrix4x3 &m, float k) - { + void accumulate(const matrix4x3 &m, float k) { a.madd(m.a, k); b.madd(m.b, k); c.madd(m.c, k); d.madd(m.d, k); } - - void normalize() - { + void normalize() { a.normalize(); b.normalize(); c.normalize(); } - - void lerp(const matrix4x3 &to, float t) - { + void lerp(const matrix4x3 &to, float t) { a.lerp(to.a, t); b.lerp(to.b, t); c.lerp(to.c, t); d.lerp(to.d, t); } - void lerp(const matrix4x3 &from, const matrix4x3 &to, float t) - { + void lerp(const matrix4x3 &from, const matrix4x3 &to, float t) { a.lerp(from.a, to.a, t); b.lerp(from.b, to.b, t); c.lerp(from.c, to.c, t); d.lerp(from.d, to.d, t); } - - void identity() - { + void identity() { a = vec(1, 0, 0); b = vec(0, 1, 0); c = vec(0, 0, 1); d = vec(0, 0, 0); } - - void mul(const matrix4x3 &m, const matrix4x3 &n) - { + void mul(const matrix4x3 &m, const matrix4x3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); d = vec(m.d).madd(m.a, n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); } void mul(const matrix4x3 &n) { mul(matrix4x3(*this), n); } - - void mul(const matrix3 &m, const matrix4x3 &n) - { + void mul(const matrix3 &m, const matrix4x3 &n) { a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z); b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z); c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z); d = vec(m.a).mul(n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z); } - - void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n) - { + void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n) { mul(rot, n); d.add(trans); } - - void transpose() - { + void transpose() { d = vec(a.dot(d), b.dot(d), c.dot(d)).neg(); swap(a.y, b.x); swap(a.z, c.x); swap(b.z, c.y); } - - void transpose(const matrix4x3 &o) - { + void transpose(const matrix4x3 &o) { a = vec(o.a.x, o.b.x, o.c.x); b = vec(o.a.y, o.b.y, o.c.y); c = vec(o.a.z, o.b.z, o.c.z); d = vec(o.a.dot(o.d), o.b.dot(o.d), o.c.dot(o.d)).neg(); } - - void transposemul(const matrix4x3 &m, const matrix4x3 &n) - { + void transposemul(const matrix4x3 &m, const matrix4x3 &n) { vec t(m.a.dot(m.d), m.b.dot(m.d), m.c.dot(m.d)); a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a)); b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b)); c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c)); d = vec(m.a.dot(n.d), m.b.dot(n.d), m.c.dot(n.d)).sub(t); } - - void multranspose(const matrix4x3 &m, const matrix4x3 &n) - { + void multranspose(const matrix4x3 &m, const matrix4x3 &n) { vec t(n.a.dot(n.d), n.b.dot(n.d), n.c.dot(n.d)); a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x); b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y); c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z); d = vec(m.d).msub(m.a, t.x).msub(m.b, t.y).msub(m.c, t.z); } - - void invert(const matrix4x3 &o) - { + void invert(const matrix4x3 &o) { vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen()); transpose(o); a.mul(unscale); @@ -943,21 +740,15 @@ struct matrix4x3 d.mul(unscale); } void invert() { invert(matrix4x3(*this)); } - - void rotate(float angle, const vec &d) - { + void rotate(float angle, const vec &d) { rotate(cosf(angle), sinf(angle), d); } - - void rotate(float ck, float sk, const vec &axis) - { + void rotate(float ck, float sk, const vec &axis) { matrix3 m; m.rotate(ck, sk, axis); *this = matrix4x3(m, vec(0, 0, 0)); } - - void rotate_around_x(float ck, float sk) - { + void rotate_around_x(float ck, float sk) { vec rb = vec(b).mul(ck).madd(c, sk), rc = vec(c).mul(ck).msub(b, sk); b = rb; @@ -965,9 +756,7 @@ struct matrix4x3 } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } - - void rotate_around_y(float ck, float sk) - { + void rotate_around_y(float ck, float sk) { vec rc = vec(c).mul(ck).madd(a, sk), ra = vec(a).mul(ck).msub(c, sk); c = rc; @@ -975,9 +764,7 @@ struct matrix4x3 } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } - - void rotate_around_z(float ck, float sk) - { + void rotate_around_z(float ck, float sk) { vec ra = vec(a).mul(ck).madd(b, sk), rb = vec(b).mul(ck).msub(a, sk); a = ra; @@ -985,20 +772,17 @@ struct matrix4x3 } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } - vec transform(const vec &o) const { return vec(d).madd(a, o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransform(const vec &o) const { vec p = vec(o).sub(d); return vec(a.dot(p), b.dot(p), c.dot(p)); } vec transformnormal(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); } vec transposedtransformnormal(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); } vec transform(const vec2 &o) const { return vec(d).madd(a, o.x).madd(b, o.y); } - vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } }; -inline dualquat::dualquat(const matrix4x3 &m) : real(m) -{ +inline dualquat::dualquat(const matrix4x3 &m) : real(m) { dual.x = 0.5f*( m.d.x*real.w + m.d.y*real.z - m.d.z*real.y); dual.y = 0.5f*(-m.d.x*real.z + m.d.y*real.w + m.d.z*real.x); dual.z = 0.5f*( m.d.x*real.y - m.d.y*real.x + m.d.z*real.w); @@ -1007,34 +791,26 @@ inline dualquat::dualquat(const matrix4x3 &m) : real(m) inline matrix3::matrix3(const matrix4x3 &m) : a(m.a), b(m.b), c(m.c) {} -struct plane : vec -{ +struct plane : vec { float offset; - float dist(const vec &p) const { return dot(p)+offset; } float dist(const vec4 &p) const { return p.dot3(*this) + p.w*offset; } bool operator==(const plane &p) const { return x==p.x && y==p.y && z==p.z && offset==p.offset; } bool operator!=(const plane &p) const { return x!=p.x || y!=p.y || z!=p.z || offset!=p.offset; } - plane() {} plane(const vec &c, float off) : vec(c), offset(off) {} plane(const vec4 &p) : vec(p), offset(p.w) {} - plane(int d, float off) - { + plane(int d, float off) { x = y = z = 0.0f; v[d] = 1.0f; offset = -off; } plane(float a, float b, float c, float d) : vec(a, b, c), offset(d) {} - - void toplane(const vec &n, const vec &p) - { + void toplane(const vec &n, const vec &p) { x = n.x; y = n.y; z = n.z; offset = -dot(p); } - - bool toplane(const vec &a, const vec &b, const vec &c) - { + bool toplane(const vec &a, const vec &b, const vec &c) { cross(vec(b).sub(a), vec(c).sub(a)); float mag = magnitude(); if(!mag) return false; @@ -1042,65 +818,48 @@ struct plane : vec offset = -dot(a); return true; } - - bool rayintersect(const vec &o, const vec &ray, float &dist) - { + bool rayintersect(const vec &o, const vec &ray, float &dist) { float cosalpha = dot(ray); if(cosalpha==0) return false; float deltac = offset+dot(o); dist -= deltac/cosalpha; return true; } - - plane &reflectz(float rz) - { + plane &reflectz(float rz) { offset += 2*rz*z; z = -z; return *this; } - - plane &invert() - { + plane &invert() { neg(); offset = -offset; return *this; } - - plane &scale(float k) - { + plane &scale(float k) { mul(k); return *this; } - - plane &translate(const vec &p) - { + plane &translate(const vec &p) { offset += dot(p); return *this; } - - plane &normalize() - { + plane &normalize() { float mag = magnitude(); div(mag); offset /= mag; return *this; } - float zintersect(const vec &p) const { return -(x*p.x+y*p.y+offset)/z; } float zdelta(const vec &p) const { return -(x*p.x+y*p.y)/z; } float zdist(const vec &p) const { return p.z-zintersect(p); } }; -struct triangle -{ +struct triangle { vec a, b, c; - triangle(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {} triangle() {} - triangle &add(const vec &o) { a.add(o); b.add(o); c.add(o); return *this; } triangle &sub(const vec &o) { a.sub(o); b.sub(o); c.sub(o); return *this; } - bool operator==(const triangle &t) const { return a == t.a && b == t.b && c == t.c; } }; @@ -1131,20 +890,16 @@ struct ivec2; struct usvec; struct svec; -struct ivec -{ - union - { +struct ivec { + union { struct { int x, y, z; }; struct { int r, g, b; }; int v[3]; }; - ivec() {} explicit ivec(const vec &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)) {} ivec(int a, int b, int c) : x(a), y(b), z(c) {} - ivec(int d, int row, int col, int depth) - { + ivec(int d, int row, int col, int depth) { v[R[d]] = row; v[C[d]] = col; v[D[d]] = depth; @@ -1154,10 +909,8 @@ struct ivec explicit ivec(const ivec2 &v, int z = 0); explicit ivec(const usvec &v); explicit ivec(const svec &v); - - int &operator[](int i) { return v[i]; } + int &operator[](int i) { return v[i]; } int operator[](int i) const { return v[i]; } - //int idx(int i) { return v[i]; } bool operator==(const ivec &v) const { return x==v.x && y==v.y && z==v.z; } bool operator!=(const ivec &v) const { return x!=v.x || y!=v.y || z!=v.z; } @@ -1183,42 +936,33 @@ struct ivec ivec &cross(const ivec &a, const ivec &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; } int dot(const ivec &o) const { return x*o.x + y*o.y + z*o.z; } float dist(const plane &p) const { return x*p.x + y*p.y + z*p.z + p.offset; } - static inline ivec floor(const vec &o) { return ivec(int(::floor(o.x)), int(::floor(o.y)), int(::floor(o.z))); } static inline ivec ceil(const vec &o) { return ivec(int(::ceil(o.x)), int(::ceil(o.y)), int(::ceil(o.z))); } }; inline vec::vec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} -static inline bool htcmp(const ivec &x, const ivec &y) -{ +static inline bool htcmp(const ivec &x, const ivec &y) { return x == y; } -static inline uint hthash(const ivec &k) -{ +static inline uint hthash(const ivec &k) { return k.x^k.y^k.z; } -struct ivec2 -{ - union - { +struct ivec2 { + union { struct { int x, y; }; int v[2]; }; - ivec2() {} ivec2(int x, int y) : x(x), y(y) {} explicit ivec2(const vec2 &v) : x(int(v.x)), y(int(v.y)) {} explicit ivec2(const ivec &v) : x(v.x), y(v.y) {} - - int &operator[](int i) { return v[i]; } + int &operator[](int i) { return v[i]; } int operator[](int i) const { return v[i]; } - bool operator==(const ivec2 &o) const { return x == o.x && y == o.y; } bool operator!=(const ivec2 &o) const { return x != o.x || y != o.y; } - bool iszero() const { return x==0 && y==0; } ivec2 &shl(int n) { x<<= n; y<<= n; return *this; } ivec2 &shr(int n) { x>>= n; y>>= n; return *this; } @@ -1243,74 +987,57 @@ struct ivec2 inline ivec::ivec(const ivec2 &v, int z) : x(v.x), y(v.y), z(z) {} -static inline bool htcmp(const ivec2 &x, const ivec2 &y) -{ +static inline bool htcmp(const ivec2 &x, const ivec2 &y) { return x == y; } -static inline uint hthash(const ivec2 &k) -{ +static inline uint hthash(const ivec2 &k) { return k.x^k.y; } -struct ivec4 -{ - union - { +struct ivec4 { + union { struct { int x, y, z, w; }; struct { int r, g, b, a; }; int v[4]; }; - ivec4() {} explicit ivec4(const ivec &p, int w = 0) : x(p.x), y(p.y), z(p.z), w(w) {} ivec4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {} explicit ivec4(const vec4 &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)), w(int(v.w)) {} - bool operator==(const ivec4 &o) const { return x == o.x && y == o.y && z == o.z && w == o.w; } bool operator!=(const ivec4 &o) const { return x != o.x || y != o.y || z != o.z || w != o.w; } }; inline ivec::ivec(const ivec4 &v) : x(v.x), y(v.y), z(v.z) {} -static inline bool htcmp(const ivec4 &x, const ivec4 &y) -{ +static inline bool htcmp(const ivec4 &x, const ivec4 &y) { return x == y; } -static inline uint hthash(const ivec4 &k) -{ +static inline uint hthash(const ivec4 &k) { return k.x^k.y^k.z^k.w; } struct bvec4; -struct bvec -{ - union - { +struct bvec { + union { struct { uchar x, y, z; }; struct { uchar r, g, b; }; uchar v[3]; }; - bvec() {} bvec(uchar x, uchar y, uchar z) : x(x), y(y), z(z) {} explicit bvec(const vec &v) : x(uchar((v.x+1)*(255.0f/2.0f))), y(uchar((v.y+1)*(255.0f/2.0f))), z(uchar((v.z+1)*(255.0f/2.0f))) {} explicit bvec(const bvec4 &v); - - uchar &operator[](int i) { return v[i]; } + uchar &operator[](int i) { return v[i]; } uchar operator[](int i) const { return v[i]; } - bool operator==(const bvec &v) const { return x==v.x && y==v.y && z==v.z; } bool operator!=(const bvec &v) const { return x!=v.x || y!=v.y || z!=v.z; } - bool iszero() const { return x==0 && y==0 && z==0; } - vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } - - bvec &normalize() - { + bvec &normalize() { vec n(x-127.5f, y-127.5f, z-127.5f); float mag = 127.5f/n.magnitude(); x = uchar(n.x*mag+127.5f); @@ -1318,193 +1045,144 @@ struct bvec z = uchar(n.z*mag+127.5f); return *this; } - void lerp(const bvec &a, const bvec &b, float t) { x = uchar(a.x + (b.x-a.x)*t); y = uchar(a.y + (b.y-a.y)*t); z = uchar(a.z + (b.z-a.z)*t); } - - void lerp(const bvec &a, const bvec &b, int ka, int kb, int d) - { + void lerp(const bvec &a, const bvec &b, int ka, int kb, int d) { x = uchar((a.x*ka + b.x*kb)/d); y = uchar((a.y*ka + b.y*kb)/d); z = uchar((a.z*ka + b.z*kb)/d); } - void flip() { x ^= 0x80; y ^= 0x80; z ^= 0x80; } - void scale(int k, int d) { x = uchar((x*k)/d); y = uchar((y*k)/d); z = uchar((z*k)/d); } - bvec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; } bvec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; } - static bvec fromcolor(const vec &v) { return bvec(uchar(v.x*255.0f), uchar(v.y*255.0f), uchar(v.z*255.0f)); } vec tocolor() const { return vec(x*(1.0f/255.0f), y*(1.0f/255.0f), z*(1.0f/255.0f)); } - static bvec from565(ushort c) { return bvec((((c>>11)&0x1F)*527 + 15) >> 6, (((c>>5)&0x3F)*259 + 35) >> 6, ((c&0x1F)*527 + 15) >> 6); } - - static bvec hexcolor(int color) - { + static bvec hexcolor(int color) { return bvec((color>>16)&0xFF, (color>>8)&0xFF, color&0xFF); } int tohexcolor() const { return (int(r)<<16)|(int(g)<<8)|int(b); } }; -struct bvec4 -{ - union - { +struct bvec4 { + union { struct { uchar x, y, z, w; }; struct { uchar r, g, b, a; }; uchar v[4]; uint mask; }; - bvec4() {} bvec4(uchar x, uchar y, uchar z, uchar w = 0) : x(x), y(y), z(z), w(w) {} bvec4(const bvec &v, uchar w = 0) : x(v.x), y(v.y), z(v.z), w(w) {} - - uchar &operator[](int i) { return v[i]; } + uchar &operator[](int i) { return v[i]; } uchar operator[](int i) const { return v[i]; } - bool operator==(const bvec4 &v) const { return mask==v.mask; } bool operator!=(const bvec4 &v) const { return mask!=v.mask; } - bool iszero() const { return mask==0; } - vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); } - - void lerp(const bvec4 &a, const bvec4 &b, float t) - { + void lerp(const bvec4 &a, const bvec4 &b, float t) { x = uchar(a.x + (b.x-a.x)*t); y = uchar(a.y + (b.y-a.y)*t); z = uchar(a.z + (b.z-a.z)*t); w = a.w; } - - void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d) - { + void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d) { x = uchar((a.x*ka + b.x*kb)/d); y = uchar((a.y*ka + b.y*kb)/d); z = uchar((a.z*ka + b.z*kb)/d); w = a.w; } - void flip() { mask ^= 0x80808080; } }; inline bvec::bvec(const bvec4 &v) : x(v.x), y(v.y), z(v.z) {} -struct usvec -{ - union - { +struct usvec { + union { struct { ushort x, y, z; }; ushort v[3]; }; - ushort &operator[](int i) { return v[i]; } ushort operator[](int i) const { return v[i]; } }; inline ivec::ivec(const usvec &v) : x(v.x), y(v.y), z(v.z) {} -struct svec -{ - union - { +struct svec { + union { struct { short x, y, z; }; short v[3]; }; - svec() {} svec(short x, short y, short z) : x(x), y(y), z(z) {} explicit svec(const ivec &v) : x(v.x), y(v.y), z(v.z) {} - short &operator[](int i) { return v[i]; } short operator[](int i) const { return v[i]; } }; inline ivec::ivec(const svec &v) : x(v.x), y(v.y), z(v.z) {} -struct svec2 -{ - union - { +struct svec2 { + union { struct { short x, y; }; short v[2]; }; - svec2() {} svec2(short x, short y) : x(x), y(y) {} - short &operator[](int i) { return v[i]; } short operator[](int i) const { return v[i]; } - bool operator==(const svec2 &o) const { return x == o.x && y == o.y; } bool operator!=(const svec2 &o) const { return x != o.x || y != o.y; } - bool iszero() const { return x==0 && y==0; } }; -struct dvec4 -{ +struct dvec4 { double x, y, z, w; - dvec4() {} dvec4(double x, double y, double z, double w) : x(x), y(y), z(z), w(w) {} dvec4(const vec4 &v) : x(v.x), y(v.y), z(v.z), w(v.w) {} - template<class B> dvec4 &madd(const dvec4 &a, const B &b) { return add(dvec4(a).mul(b)); } - dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; } + dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; } dvec4 &mul(const dvec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; } - dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; } + dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; } dvec4 &add(const dvec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; } - operator vec4() const { return vec4(x, y, z, w); } }; -struct matrix4 -{ +struct matrix4 { vec4 a, b, c, d; - matrix4() {} matrix4(const float *m) : a(m), b(m+4), c(m+8), d(m+12) {} matrix4(const vec &a, const vec &b, const vec &c = vec(0, 0, 1)) - : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1) - {} + : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1) { + } matrix4(const vec4 &a, const vec4 &b, const vec4 &c, const vec4 &d = vec4(0, 0, 0, 1)) - : a(a), b(b), c(c), d(d) - {} + : a(a), b(b), c(c), d(d) { + } matrix4(const matrix4x3 &m) - : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1) - {} + : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1) { + } matrix4(const matrix3 &rot, const vec &trans) - : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1) - {} - - void mul(const matrix4 &x, const matrix3 &y) - { + : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1) { + } + void mul(const matrix4 &x, const matrix3 &y) { a = vec4(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z); b = vec4(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z); c = vec4(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z); d = x.d; } void mul(const matrix3 &y) { mul(matrix4(*this), y); } - - template<class T> void mult(const matrix4 &x, const matrix4 &y) - { + template<class T> void mult(const matrix4 &x, const matrix4 &y) { a = T(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z).madd(x.d, y.a.w); b = T(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z).madd(x.d, y.b.w); c = T(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z).madd(x.d, y.c.w); d = T(x.a).mul(y.d.x).madd(x.b, y.d.y).madd(x.c, y.d.z).madd(x.d, y.d.w); } - void mul(const matrix4 &x, const matrix4 &y) { mult<vec4>(x, y); } void mul(const matrix4 &y) { mult<vec4>(matrix4(*this), y); } - void muld(const matrix4 &x, const matrix4 &y) { mult<dvec4>(x, y); } void muld(const matrix4 &y) { mult<dvec4>(matrix4(*this), y); } - - void rotate_around_x(float ck, float sk) - { + void rotate_around_x(float ck, float sk) { vec4 rb = vec4(b).mul(ck).madd(c, sk), rc = vec4(c).mul(ck).msub(b, sk); b = rb; @@ -1512,9 +1190,7 @@ struct matrix4 } void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); } void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); } - - void rotate_around_y(float ck, float sk) - { + void rotate_around_y(float ck, float sk) { vec4 rc = vec4(c).mul(ck).madd(a, sk), ra = vec4(a).mul(ck).msub(c, sk); c = rc; @@ -1522,9 +1198,7 @@ struct matrix4 } void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); } void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); } - - void rotate_around_z(float ck, float sk) - { + void rotate_around_z(float ck, float sk) { vec4 ra = vec4(a).mul(ck).madd(b, sk), rb = vec4(b).mul(ck).msub(a, sk); a = ra; @@ -1532,68 +1206,51 @@ struct matrix4 } void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); } void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); } - - void rotate(float ck, float sk, const vec &axis) - { + void rotate(float ck, float sk, const vec &axis) { matrix3 m; m.rotate(ck, sk, axis); mul(m); } void rotate(float angle, const vec &dir) { rotate(cosf(angle), sinf(angle), dir); } void rotate(const vec2 &sc, const vec &dir) { rotate(sc.x, sc.y, dir); } - - void identity() - { + void identity() { a = vec4(1, 0, 0, 0); b = vec4(0, 1, 0, 0); c = vec4(0, 0, 1, 0); d = vec4(0, 0, 0, 1); } - void settranslation(const vec &v) { d.setxyz(v); } void settranslation(float x, float y, float z) { d.x = x; d.y = y; d.z = z; } - void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); } void translate(float x, float y, float z) { translate(vec(x, y, z)); } void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); } - void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; } void setscale(const vec &v) { setscale(v.x, v.y, v.z); } void setscale(float n) { setscale(n, n, n); } - - void scale(float x, float y, float z) - { + void scale(float x, float y, float z) { a.mul(x); b.mul(y); c.mul(z); } void scale(const vec &v) { scale(v.x, v.y, v.z); } void scale(float n) { scale(n, n, n); } - - void scalexy(float x, float y) - { + void scalexy(float x, float y) { a.x *= x; a.y *= y; b.x *= x; b.y *= y; c.x *= x; c.y *= y; d.x *= x; d.y *= y; } - - void scalez(float k) - { + void scalez(float k) { a.z *= k; b.z *= k; c.z *= k; d.z *= k; } - - void reflectz(float z) - { + void reflectz(float z) { d.add(vec4(c).mul(2*z)); c.neg(); } - - void projective(float zscale = 0.5f, float zoffset = 0.5f) - { + void projective(float zscale = 0.5f, float zoffset = 0.5f) { a.x = 0.5f*(a.x + a.w); a.y = 0.5f*(a.y + a.w); b.x = 0.5f*(b.x + b.w); @@ -1607,9 +1264,7 @@ struct matrix4 c.z = zscale*c.z + zoffset*c.w; d.z = zscale*d.z + zoffset*d.w; } - - void jitter(float x, float y) - { + void jitter(float x, float y) { a.x += x * a.w; a.y += y * a.w; b.x += x * b.w; @@ -1619,48 +1274,36 @@ struct matrix4 d.x += x * d.w; d.y += y * d.w; } - - void transpose() - { + void transpose() { swap(a.y, b.x); swap(a.z, c.x); swap(a.w, d.x); swap(b.z, c.y); swap(b.w, d.y); swap(c.w, d.z); } - - void transpose(const matrix4 &m) - { + void transpose(const matrix4 &m) { a = vec4(m.a.x, m.b.x, m.c.x, m.d.x); b = vec4(m.a.y, m.b.y, m.c.y, m.d.y); c = vec4(m.a.z, m.b.z, m.c.z, m.d.z); d = vec4(m.a.w, m.b.w, m.c.w, m.d.w); } - - void frustum(float left, float right, float bottom, float top, float znear, float zfar) - { + void frustum(float left, float right, float bottom, float top, float znear, float zfar) { float width = right - left, height = top - bottom, zrange = znear - zfar; a = vec4(2*znear/width, 0, 0, 0); b = vec4(0, 2*znear/height, 0, 0); c = vec4((right + left)/width, (top + bottom)/height, (zfar + znear)/zrange, -1); d = vec4(0, 0, 2*znear*zfar/zrange, 0); } - - void perspective(float fovy, float aspect, float znear, float zfar) - { + void perspective(float fovy, float aspect, float znear, float zfar) { float ydist = znear * tan(fovy/2*RAD), xdist = ydist * aspect; frustum(-xdist, xdist, -ydist, ydist, znear, zfar); } - - void ortho(float left, float right, float bottom, float top, float znear, float zfar) - { + void ortho(float left, float right, float bottom, float top, float znear, float zfar) { float width = right - left, height = top - bottom, zrange = znear - zfar; a = vec4(2/width, 0, 0, 0); b = vec4(0, 2/height, 0, 0); c = vec4(0, 0, 2/zrange, 0); d = vec4(-(right+left)/width, -(top+bottom)/height, (zfar+znear)/zrange, 1); } - - void clip(const plane &p, const matrix4 &m) - { + void clip(const plane &p, const matrix4 &m) { float x = ((p.x<0 ? -1 : (p.x>0 ? 1 : 0)) + m.c.x) / m.a.x, y = ((p.y<0 ? -1 : (p.y>0 ? 1 : 0)) + m.c.y) / m.b.y, w = (1 + m.c.z) / m.d.z, @@ -1670,134 +1313,96 @@ struct matrix4 c = vec4(m.c.x, m.c.y, p.z*scale + 1.0f, m.c.w); d = vec4(m.d.x, m.d.y, p.offset*scale, m.d.w); } - - void transform(const vec &in, vec &out) const - { + void transform(const vec &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d)); } - - void transform(const vec4 &in, vec &out) const - { + void transform(const vec4 &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d).mul(in.w)); } - - void transform(const vec &in, vec4 &out) const - { + void transform(const vec &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).add(d); } - - void transform(const vec4 &in, vec4 &out) const - { + void transform(const vec4 &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).madd(d, in.w); } - - template<class T, class U> T transform(const U &in) const - { + template<class T, class U> T transform(const U &in) const { T v; transform(in, v); return v; } - - template<class T> vec perspectivetransform(const T &in) const - { + template<class T> vec perspectivetransform(const T &in) const { vec4 v; transform(in, v); return vec(v).div(v.w); } - - void transformnormal(const vec &in, vec &out) const - { + void transformnormal(const vec &in, vec &out) const { out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)); } - - void transformnormal(const vec &in, vec4 &out) const - { + void transformnormal(const vec &in, vec4 &out) const { out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z); } - - template<class T, class U> T transformnormal(const U &in) const - { + template<class T, class U> T transformnormal(const U &in) const { T v; transformnormal(in, v); return v; } - - void transposedtransform(const vec &in, vec &out) const - { + void transposedtransform(const vec &in, vec &out) const { vec p = vec(in).sub(vec(d)); out.x = a.dot3(p); out.y = b.dot3(p); out.z = c.dot3(p); } - - void transposedtransformnormal(const vec &in, vec &out) const - { + void transposedtransformnormal(const vec &in, vec &out) const { out.x = a.dot3(in); out.y = b.dot3(in); out.z = c.dot3(in); } - - void transposedtransform(const plane &in, plane &out) const - { + void transposedtransform(const plane &in, plane &out) const { out.x = in.dist(a); out.y = in.dist(b); out.z = in.dist(c); out.offset = in.dist(d); } - - float getscale() const - { + float getscale() const { return sqrtf(a.x*a.y + b.x*b.x + c.x*c.x); } - - vec gettranslation() const - { + vec gettranslation() const { return vec(d); } - vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); } vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); } vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); } vec4 roww() const { return vec4(a.w, b.w, c.w, d.w); } - bool invert(const matrix4 &m, double mindet = 1.0e-12); }; inline matrix3::matrix3(const matrix4 &m) - : a(m.a), b(m.b), c(m.c) -{} + : a(m.a), b(m.b), c(m.c) { +} inline matrix4x3::matrix4x3(const matrix4 &m) - : a(m.a), b(m.b), c(m.c), d(m.d) -{} + : a(m.a), b(m.b), c(m.c), d(m.d) { +} -struct matrix2 -{ +struct matrix2 { vec2 a, b; - matrix2() {} matrix2(const vec2 &a, const vec2 &b) : a(a), b(b) {} explicit matrix2(const matrix4 &m) : a(m.a), b(m.b) {} explicit matrix2(const matrix3 &m) : a(m.a), b(m.b) {} }; -struct squat -{ +struct squat { short x, y, z, w; - squat() {} squat(const vec4 &q) { convert(q); } - - void convert(const vec4 &q) - { + void convert(const vec4 &q) { x = short(q.x*32767.5f-0.5f); y = short(q.y*32767.5f-0.5f); z = short(q.z*32767.5f-0.5f); w = short(q.w*32767.5f-0.5f); } - - void lerp(const vec4 &a, const vec4 &b, float t) - { + void lerp(const vec4 &a, const vec4 &b, float t) { vec4 q; q.lerp(a, b, t); convert(q); @@ -1809,8 +1414,7 @@ extern bool rayboxintersect(const vec &b, const vec &s, const vec &o, const vec extern bool linecylinderintersect(const vec &from, const vec &to, const vec &start, const vec &end, float radius, float &dist); extern const vec2 sincos360[]; -static inline int mod360(int angle) -{ +static inline int mod360(int angle) { if(angle < 0) angle = 360 + (angle <= -360 ? angle%360 : angle); else if(angle >= 360) angle %= 360; return angle; |
