summaryrefslogtreecommitdiff
path: root/src/shared/geom.h
diff options
context:
space:
mode:
authorxolatile2025-08-06 22:54:55 +0200
committerxolatile2025-08-06 22:54:55 +0200
commit0a1172b75f571685c264a8b9d8ee224bbf11381f (patch)
treed041fdc68a60f0ebb48a3852bbcce6d9432f83d5 /src/shared/geom.h
parentaffde05dc07a94643f1fd2751b2b441f57f73d7d (diff)
downloadxolatile-badassbug-0a1172b75f571685c264a8b9d8ee224bbf11381f.tar.xz
xolatile-badassbug-0a1172b75f571685c264a8b9d8ee224bbf11381f.tar.zst
Please do not hate me, it makes sense...
Diffstat (limited to 'src/shared/geom.h')
-rw-r--r--src/shared/geom.h884
1 files changed, 244 insertions, 640 deletions
diff --git a/src/shared/geom.h b/src/shared/geom.h
index a0ef7c8..745ff37 100644
--- a/src/shared/geom.h
+++ b/src/shared/geom.h
@@ -1,48 +1,41 @@
struct vec;
struct vec4;
-struct vec2
-{
- union
- {
+struct vec2 {
+ union {
struct { float x, y; };
float v[2];
};
-
vec2() {}
vec2(float x, float y) : x(x), y(y) {}
explicit vec2(const vec &v);
explicit vec2(const vec4 &v);
-
- float &operator[](int i) { return v[i]; }
+ float &operator[](int i) { return v[i]; }
float operator[](int i) const { return v[i]; }
-
bool operator==(const vec2 &o) const { return x == o.x && y == o.y; }
bool operator!=(const vec2 &o) const { return x != o.x || y != o.y; }
-
bool iszero() const { return x==0 && y==0; }
- float dot(const vec2 &o) const { return x*o.x + y*o.y; }
+ float dot(const vec2 &o) const { return x*o.x + y*o.y; }
float squaredlen() const { return dot(*this); }
- float magnitude() const { return sqrtf(squaredlen()); }
+ float magnitude() const { return sqrtf(squaredlen()); }
vec2 &normalize() { mul(1/magnitude()); return *this; }
vec2 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; }
float cross(const vec2 &o) const { return x*o.y - y*o.x; }
-
- vec2 &mul(float f) { x *= f; y *= f; return *this; }
+ vec2 &mul(float f) { x *= f; y *= f; return *this; }
vec2 &mul(const vec2 &o) { x *= o.x; y *= o.y; return *this; }
- vec2 &square() { mul(*this); return *this; }
- vec2 &div(float f) { x /= f; y /= f; return *this; }
+ vec2 &square() { mul(*this); return *this; }
+ vec2 &div(float f) { x /= f; y /= f; return *this; }
vec2 &div(const vec2 &o) { x /= o.x; y /= o.y; return *this; }
vec2 &recip() { x = 1/x; y = 1/y; return *this; }
- vec2 &add(float f) { x += f; y += f; return *this; }
+ vec2 &add(float f) { x += f; y += f; return *this; }
vec2 &add(const vec2 &o) { x += o.x; y += o.y; return *this; }
- vec2 &sub(float f) { x -= f; y -= f; return *this; }
+ vec2 &sub(float f) { x -= f; y -= f; return *this; }
vec2 &sub(const vec2 &o) { x -= o.x; y -= o.y; return *this; }
- vec2 &neg() { x = -x; y = -y; return *this; }
+ vec2 &neg() { x = -x; y = -y; return *this; }
vec2 &min(const vec2 &o) { x = ::min(x, o.x); y = ::min(y, o.y); return *this; }
vec2 &max(const vec2 &o) { x = ::max(x, o.x); y = ::max(y, o.y); return *this; }
- vec2 &min(float f) { x = ::min(x, f); y = ::min(y, f); return *this; }
- vec2 &max(float f) { x = ::max(x, f); y = ::max(y, f); return *this; }
+ vec2 &min(float f) { x = ::min(x, f); y = ::min(y, f); return *this; }
+ vec2 &max(float f) { x = ::max(x, f); y = ::max(y, f); return *this; }
vec2 &abs() { x = fabs(x); y = fabs(y); return *this; }
vec2 &clamp(float l, float h) { x = ::clamp(x, l, h); y = ::clamp(y, l, h); return *this; }
vec2 &reflect(const vec2 &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; return *this; }
@@ -52,13 +45,11 @@ struct vec2
template<class B> vec2 &msub(const vec2 &a, const B &b) { return sub(vec2(a).mul(b)); }
};
-static inline bool htcmp(const vec2 &x, const vec2 &y)
-{
+static inline bool htcmp(const vec2 &x, const vec2 &y) {
return x == y;
}
-static inline uint hthash(const vec2 &k)
-{
+static inline uint hthash(const vec2 &k) {
union { uint i; float f; } x, y;
x.f = k.x; y.f = k.y;
uint v = x.i^y.i;
@@ -67,15 +58,12 @@ static inline uint hthash(const vec2 &k)
struct ivec;
-struct vec
-{
- union
- {
+struct vec {
+ union {
struct { float x, y, z; };
struct { float r, g, b; };
float v[3];
};
-
vec() {}
explicit vec(int a) : x(a), y(a), z(a) {}
explicit vec(float a) : x(a), y(a), z(a) {}
@@ -85,50 +73,45 @@ struct vec
explicit vec(const vec2 &v, float z = 0) : x(v.x), y(v.y), z(z) {}
explicit vec(const vec4 &v);
explicit vec(const ivec &v);
-
vec(float yaw, float pitch) : x(-sinf(yaw)*cosf(pitch)), y(cosf(yaw)*cosf(pitch)), z(sinf(pitch)) {}
-
- float &operator[](int i) { return v[i]; }
+ float &operator[](int i) { return v[i]; }
float operator[](int i) const { return v[i]; }
-
vec &set(int i, float f) { v[i] = f; return *this; }
-
bool operator==(const vec &o) const { return x == o.x && y == o.y && z == o.z; }
bool operator!=(const vec &o) const { return x != o.x || y != o.y || z != o.z; }
-
bool iszero() const { return x==0 && y==0 && z==0; }
float squaredlen() const { return x*x + y*y + z*z; }
template<class T> float dot2(const T &o) const { return x*o.x + y*o.y; }
float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z; }
float absdot(const vec &o) const { return fabs(x*o.x) + fabs(y*o.y) + fabs(z*o.z); }
vec &pow(float f) { x = ::pow(x, f); y = ::pow(y, f); z = ::pow(z, f); return *this; }
- vec &exp() { x = ::exp(x); y = ::exp(y); z = ::exp(z); return *this; }
- vec &exp2() { x = ::exp2(x); y = ::exp2(y); z = ::exp2(z); return *this; }
- vec &sqrt() { x = sqrtf(x); y = sqrtf(y); z = sqrtf(z); return *this; }
- vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; }
+ vec &exp() { x = ::exp(x); y = ::exp(y); z = ::exp(z); return *this; }
+ vec &exp2() { x = ::exp2(x); y = ::exp2(y); z = ::exp2(z); return *this; }
+ vec &sqrt() { x = sqrtf(x); y = sqrtf(y); z = sqrtf(z); return *this; }
+ vec &mul(const vec &o) { x *= o.x; y *= o.y; z *= o.z; return *this; }
vec &mul(float f) { x *= f; y *= f; z *= f; return *this; }
vec &square() { mul(*this); return *this; }
- vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; }
+ vec &div(const vec &o) { x /= o.x; y /= o.y; z /= o.z; return *this; }
vec &div(float f) { x /= f; y /= f; z /= f; return *this; }
vec &recip() { x = 1/x; y = 1/y; z = 1/z; return *this; }
- vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; }
+ vec &add(const vec &o) { x += o.x; y += o.y; z += o.z; return *this; }
vec &add(float f) { x += f; y += f; z += f; return *this; }
- vec &add2(float f) { x += f; y += f; return *this; }
- vec &addz(float f) { z += f; return *this; }
- vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; }
+ vec &add2(float f) { x += f; y += f; return *this; }
+ vec &addz(float f) { z += f; return *this; }
+ vec &sub(const vec &o) { x -= o.x; y -= o.y; z -= o.z; return *this; }
vec &sub(float f) { x -= f; y -= f; z -= f; return *this; }
- vec &sub2(float f) { x -= f; y -= f; return *this; }
- vec &subz(float f) { z -= f; return *this; }
- vec &neg2() { x = -x; y = -y; return *this; }
- vec &neg() { x = -x; y = -y; z = -z; return *this; }
- vec &min(const vec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; }
- vec &max(const vec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; }
+ vec &sub2(float f) { x -= f; y -= f; return *this; }
+ vec &subz(float f) { z -= f; return *this; }
+ vec &neg2() { x = -x; y = -y; return *this; }
+ vec &neg() { x = -x; y = -y; z = -z; return *this; }
+ vec &min(const vec &o) { x = ::min(x, o.x); y = ::min(y, o.y); z = ::min(z, o.z); return *this; }
+ vec &max(const vec &o) { x = ::max(x, o.x); y = ::max(y, o.y); z = ::max(z, o.z); return *this; }
vec &min(float f) { x = ::min(x, f); y = ::min(y, f); z = ::min(z, f); return *this; }
vec &max(float f) { x = ::max(x, f); y = ::max(y, f); z = ::max(z, f); return *this; }
vec &clamp(float f, float h) { x = ::clamp(x, f, h); y = ::clamp(y, f, h); z = ::clamp(z, f, h); return *this; }
vec &abs() { x = fabs(x); y = fabs(y); z = fabs(z); return *this; }
float magnitude2() const { return sqrtf(dot2(*this)); }
- float magnitude() const { return sqrtf(squaredlen()); }
+ float magnitude() const { return sqrtf(squaredlen()); }
vec &normalize() { div(magnitude()); return *this; }
vec &safenormalize() { float m = magnitude(); if(m) div(m); return *this; }
bool isnormalized() const { float m = squaredlen(); return (m>0.99f && m<1.01f); }
@@ -145,15 +128,13 @@ struct vec
vec &reflect(const vec &n) { float k = 2*dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; }
vec &project(const vec &n) { float k = dot(n); x -= k*n.x; y -= k*n.y; z -= k*n.z; return *this; }
vec &projectxydir(const vec &n) { if(n.z) z = -(x*n.x/n.z + y*n.y/n.z); return *this; }
- vec &projectxy(const vec &n)
- {
+ vec &projectxy(const vec &n) {
float m = squaredlen(), k = dot(n);
projectxydir(n);
rescale(sqrtf(::max(m - k*k, 0.0f)));
return *this;
}
- vec &projectxy(const vec &n, float threshold)
- {
+ vec &projectxy(const vec &n, float threshold) {
float m = squaredlen(), k = ::min(dot(n), threshold);
projectxydir(n);
rescale(sqrtf(::max(m - k*k, 0.0f)));
@@ -163,28 +144,21 @@ struct vec
vec &lerp(const vec &a, const vec &b, float t) { x = a.x + (b.x-a.x)*t; y = a.y + (b.y-a.y)*t; z = a.z + (b.z-a.z)*t; return *this; }
template<class B> vec &madd(const vec &a, const B &b) { return add(vec(a).mul(b)); }
template<class B> vec &msub(const vec &a, const B &b) { return sub(vec(a).mul(b)); }
-
- vec &rescale(float k)
- {
+ vec &rescale(float k) {
float mag = magnitude();
if(mag > 1e-6f) mul(k / mag);
return *this;
}
-
vec &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; }
vec &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; }
vec &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; }
-
vec &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); }
vec &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); }
vec &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); }
-
vec &rotate_around_z(const vec2 &sc) { return rotate_around_z(sc.x, sc.y); }
vec &rotate_around_x(const vec2 &sc) { return rotate_around_x(sc.x, sc.y); }
vec &rotate_around_y(const vec2 &sc) { return rotate_around_y(sc.x, sc.y); }
-
- vec &rotate(float c, float s, const vec &d)
- {
+ vec &rotate(float c, float s, const vec &d) {
*this = vec(x*(d.x*d.x*(1-c)+c) + y*(d.x*d.y*(1-c)-d.z*s) + z*(d.x*d.z*(1-c)+d.y*s),
x*(d.y*d.x*(1-c)+d.z*s) + y*(d.y*d.y*(1-c)+c) + z*(d.y*d.z*(1-c)-d.x*s),
x*(d.x*d.z*(1-c)-d.y*s) + y*(d.y*d.z*(1-c)+d.x*s) + z*(d.z*d.z*(1-c)+c));
@@ -192,49 +166,34 @@ struct vec
}
vec &rotate(float angle, const vec &d) { return rotate(cosf(angle), sinf(angle), d); }
vec &rotate(const vec2 &sc, const vec &d) { return rotate(sc.x, sc.y, d); }
-
- void orthogonal(const vec &d)
- {
+ void orthogonal(const vec &d) {
*this = fabs(d.x) > fabs(d.z) ? vec(-d.y, d.x, 0) : vec(0, -d.z, d.y);
}
-
- void orthonormalize(vec &s, vec &t) const
- {
+ void orthonormalize(vec &s, vec &t) const {
s.sub(vec(*this).mul(dot(s)));
t.sub(vec(*this).mul(dot(t)))
.sub(vec(s).mul(s.dot(t)));
}
-
template<class T>
- bool insidebb(const T &bbmin, const T &bbmax) const
- {
+ bool insidebb(const T &bbmin, const T &bbmax) const {
return x >= bbmin.x && x <= bbmax.x && y >= bbmin.y && y <= bbmax.y && z >= bbmin.z && z <= bbmax.z;
}
-
template<class T, class U>
- bool insidebb(const T &o, U size) const
- {
+ bool insidebb(const T &o, U size) const {
return x >= o.x && x <= o.x + size && y >= o.y && y <= o.y + size && z >= o.z && z <= o.z + size;
}
-
- template<class T> float dist_to_bb(const T &min, const T &max) const
- {
+ template<class T> float dist_to_bb(const T &min, const T &max) const {
float sqrdist = 0;
- loopi(3)
- {
+ loopi(3) {
if (v[i] < min[i]) { float delta = v[i]-min[i]; sqrdist += delta*delta; }
else if(v[i] > max[i]) { float delta = max[i]-v[i]; sqrdist += delta*delta; }
}
return sqrtf(sqrdist);
}
-
- template<class T, class S> float dist_to_bb(const T &o, S size) const
- {
+ template<class T, class S> float dist_to_bb(const T &o, S size) const {
return dist_to_bb(o, T(o).add(size));
}
-
- static vec hexcolor(int color)
- {
+ static vec hexcolor(int color) {
return vec(((color>>16)&0xFF)*(1.0f/255.0f), ((color>>8)&0xFF)*(1.0f/255.0f), (color&0xFF)*(1.0f/255.0f));
}
int tohexcolor() const { return (int(::clamp(r, 0.0f, 1.0f)*255)<<16)|(int(::clamp(g, 0.0f, 1.0f)*255)<<8)|int(::clamp(b, 0.0f, 1.0f)*255); }
@@ -242,85 +201,71 @@ struct vec
inline vec2::vec2(const vec &v) : x(v.x), y(v.y) {}
-static inline bool htcmp(const vec &x, const vec &y)
-{
+static inline bool htcmp(const vec &x, const vec &y) {
return x == y;
}
-static inline uint hthash(const vec &k)
-{
+static inline uint hthash(const vec &k) {
union { uint i; float f; } x, y, z;
x.f = k.x; y.f = k.y; z.f = k.z;
uint v = x.i^y.i^z.i;
return v + (v>>12);
}
-struct vec4
-{
- union
- {
+struct vec4 {
+ union {
struct { float x, y, z, w; };
struct { float r, g, b, a; };
float v[4];
};
-
vec4() {}
explicit vec4(const vec &p, float w = 0) : x(p.x), y(p.y), z(p.z), w(w) {}
vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
explicit vec4(const float *v) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {}
-
- float &operator[](int i) { return v[i]; }
+ float &operator[](int i) { return v[i]; }
float operator[](int i) const { return v[i]; }
-
template<class T> float dot3(const T &o) const { return x*o.x + y*o.y + z*o.z; }
float dot(const vec4 &o) const { return dot3(o) + w*o.w; }
- float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; }
+ float dot(const vec &o) const { return x*o.x + y*o.y + z*o.z + w; }
float squaredlen() const { return dot(*this); }
- float magnitude() const { return sqrtf(squaredlen()); }
+ float magnitude() const { return sqrtf(squaredlen()); }
float magnitude3() const { return sqrtf(dot3(*this)); }
vec4 &normalize() { mul(1/magnitude()); return *this; }
vec4 &safenormalize() { float m = magnitude(); if(m) mul(1/m); return *this; }
-
- vec4 &lerp(const vec4 &b, float t)
- {
+ vec4 &lerp(const vec4 &b, float t) {
x += (b.x-x)*t;
y += (b.y-y)*t;
z += (b.z-z)*t;
w += (b.w-w)*t;
return *this;
}
- vec4 &lerp(const vec4 &a, const vec4 &b, float t)
- {
+ vec4 &lerp(const vec4 &a, const vec4 &b, float t) {
x = a.x+(b.x-a.x)*t;
y = a.y+(b.y-a.y)*t;
z = a.z+(b.z-a.z)*t;
w = a.w+(b.w-a.w)*t;
return *this;
}
-
- vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; }
- vec4 &mul(float f) { mul3(f); w *= f; return *this; }
+ vec4 &mul3(float f) { x *= f; y *= f; z *= f; return *this; }
+ vec4 &mul(float f) { mul3(f); w *= f; return *this; }
vec4 &mul(const vec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; }
- vec4 &square() { mul(*this); return *this; }
- vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; }
- vec4 &div(float f) { div3(f); w /= f; return *this; }
+ vec4 &square() { mul(*this); return *this; }
+ vec4 &div3(float f) { x /= f; y /= f; z /= f; return *this; }
+ vec4 &div(float f) { div3(f); w /= f; return *this; }
vec4 &div(const vec4 &o) { x /= o.x; y /= o.y; z /= o.z; w /= o.w; return *this; }
vec4 &recip() { x = 1/x; y = 1/y; z = 1/z; w = 1/w; return *this; }
vec4 &add(const vec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; }
- vec4 &addw(float f) { w += f; return *this; }
+ vec4 &addw(float f) { w += f; return *this; }
vec4 &sub(const vec4 &o) { x -= o.x; y -= o.y; z -= o.z; w -= o.w; return *this; }
- vec4 &subw(float f) { w -= f; return *this; }
+ vec4 &subw(float f) { w -= f; return *this; }
vec4 &neg3() { x = -x; y = -y; z = -z; return *this; }
- vec4 &neg() { neg3(); w = -w; return *this; }
+ vec4 &neg() { neg3(); w = -w; return *this; }
template<class B> vec4 &madd(const vec4 &a, const B &b) { return add(vec4(a).mul(b)); }
template<class B> vec4 &msub(const vec4 &a, const B &b) { return sub(vec4(a).mul(b)); }
-
void setxyz(const vec &v) { x = v.x; y = v.y; z = v.z; }
-
vec4 &rotate_around_z(float c, float s) { float rx = x, ry = y; x = c*rx-s*ry; y = c*ry+s*rx; return *this; }
vec4 &rotate_around_x(float c, float s) { float ry = y, rz = z; y = c*ry-s*rz; z = c*rz+s*ry; return *this; }
vec4 &rotate_around_y(float c, float s) { float rx = x, rz = z; x = c*rx+s*rz; z = c*rz-s*rx; return *this; }
-
vec4 &rotate_around_z(float angle) { return rotate_around_z(cosf(angle), sinf(angle)); }
vec4 &rotate_around_x(float angle) { return rotate_around_x(cosf(angle), sinf(angle)); }
vec4 &rotate_around_y(float angle) { return rotate_around_y(cosf(angle), sinf(angle)); }
@@ -332,20 +277,17 @@ struct matrix3;
struct matrix4x3;
struct matrix4;
-struct quat : vec4
-{
+struct quat : vec4 {
quat() {}
quat(float x, float y, float z, float w) : vec4(x, y, z, w) {}
- quat(const vec &axis, float angle)
- {
+ quat(const vec &axis, float angle) {
w = cosf(angle/2);
float s = sinf(angle/2);
x = s*axis.x;
y = s*axis.y;
z = s*axis.z;
}
- explicit quat(const vec &v)
- {
+ explicit quat(const vec &v) {
x = v.x;
y = v.y;
z = v.z;
@@ -354,15 +296,11 @@ struct quat : vec4
explicit quat(const matrix3 &m) { convertmatrix(m); }
explicit quat(const matrix4x3 &m) { convertmatrix(m); }
explicit quat(const matrix4 &m) { convertmatrix(m); }
-
void restorew() { w = 1.0f-x*x-y*y-z*z; w = w<0 ? 0 : -sqrtf(w); }
-
quat &add(const vec4 &o) { vec4::add(o); return *this; }
quat &sub(const vec4 &o) { vec4::sub(o); return *this; }
quat &mul(float k) { vec4::mul(k); return *this; }
-
- quat &mul(const quat &p, const quat &o)
- {
+ quat &mul(const quat &p, const quat &o) {
x = p.w*o.x + p.x*o.w + p.y*o.z - p.z*o.y;
y = p.w*o.y - p.x*o.z + p.y*o.w + p.z*o.x;
z = p.w*o.z + p.x*o.y - p.y*o.x + p.z*o.w;
@@ -370,60 +308,46 @@ struct quat : vec4
return *this;
}
quat &mul(const quat &o) { return mul(quat(*this), o); }
-
quat &invert() { neg3(); return *this; }
-
- void calcangleaxis(float &angle, vec &axis)
- {
+ void calcangleaxis(float &angle, vec &axis) {
float rr = dot3(*this);
- if(rr>0)
- {
+ if(rr>0) {
angle = 2*acosf(w);
axis = vec(x, y, z).mul(1/rr);
}
else { angle = 0; axis = vec(0, 0, 1); }
}
-
- vec rotate(const vec &v) const
- {
+ vec rotate(const vec &v) const {
return vec().cross(*this, vec().cross(*this, v).add(vec(v).mul(w))).mul(2).add(v);
}
-
- vec invertedrotate(const vec &v) const
- {
+ vec invertedrotate(const vec &v) const {
return vec().cross(*this, vec().cross(*this, v).sub(vec(v).mul(w))).mul(2).add(v);
}
-
template<class M>
- void convertmatrix(const M &m)
- {
+ void convertmatrix(const M &m) {
float trace = m.a.x + m.b.y + m.c.z;
- if(trace>0)
- {
+ if(trace>0) {
float r = sqrtf(1 + trace), inv = 0.5f/r;
w = 0.5f*r;
x = (m.b.z - m.c.y)*inv;
y = (m.c.x - m.a.z)*inv;
z = (m.a.y - m.b.x)*inv;
}
- else if(m.a.x > m.b.y && m.a.x > m.c.z)
- {
+ else if(m.a.x > m.b.y && m.a.x > m.c.z) {
float r = sqrtf(1 + m.a.x - m.b.y - m.c.z), inv = 0.5f/r;
x = 0.5f*r;
y = (m.a.y + m.b.x)*inv;
z = (m.c.x + m.a.z)*inv;
w = (m.b.z - m.c.y)*inv;
}
- else if(m.b.y > m.c.z)
- {
+ else if(m.b.y > m.c.z) {
float r = sqrtf(1 + m.b.y - m.a.x - m.c.z), inv = 0.5f/r;
x = (m.a.y + m.b.x)*inv;
y = 0.5f*r;
z = (m.b.z + m.c.y)*inv;
w = (m.c.x - m.a.z)*inv;
}
- else
- {
+ else {
float r = sqrtf(1 + m.c.z - m.a.x - m.b.y), inv = 0.5f/r;
x = (m.c.x + m.a.z)*inv;
y = (m.b.z + m.c.y)*inv;
@@ -433,147 +357,105 @@ struct quat : vec4
}
};
-struct dualquat
-{
+struct dualquat {
quat real, dual;
-
dualquat() {}
dualquat(const quat &q, const vec &p)
: real(q),
dual(0.5f*( p.x*q.w + p.y*q.z - p.z*q.y),
0.5f*(-p.x*q.z + p.y*q.w + p.z*q.x),
0.5f*( p.x*q.y - p.y*q.x + p.z*q.w),
- -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z))
- {
+ -0.5f*( p.x*q.x + p.y*q.y + p.z*q.z)) {
}
explicit dualquat(const quat &q) : real(q), dual(0, 0, 0, 0) {}
explicit dualquat(const matrix4x3 &m);
-
dualquat &mul(float k) { real.mul(k); dual.mul(k); return *this; }
dualquat &add(const dualquat &d) { real.add(d.real); dual.add(d.dual); return *this; }
-
- dualquat &lerp(const dualquat &to, float t)
- {
+ dualquat &lerp(const dualquat &to, float t) {
float k = real.dot(to.real) < 0 ? -t : t;
real.mul(1-t).add(vec4(to.real).mul(k));
dual.mul(1-t).add(vec4(to.dual).mul(k));
return *this;
}
- dualquat &lerp(const dualquat &from, const dualquat &to, float t)
- {
+ dualquat &lerp(const dualquat &from, const dualquat &to, float t) {
float k = from.real.dot(to.real) < 0 ? -t : t;
(real = from.real).mul(1-t).add(vec4(to.real).mul(k));
(dual = from.dual).mul(1-t).add(vec4(to.dual).mul(k));
return *this;
}
-
- dualquat &invert()
- {
+ dualquat &invert() {
real.invert();
dual.invert();
dual.sub(quat(real).mul(2*real.dot(dual)));
return *this;
}
-
- void mul(const dualquat &p, const dualquat &o)
- {
+ void mul(const dualquat &p, const dualquat &o) {
real.mul(p.real, o.real);
dual.mul(p.real, o.dual).add(quat().mul(p.dual, o.real));
}
void mul(const dualquat &o) { mul(dualquat(*this), o); }
-
- void mulorient(const quat &q)
- {
+ void mulorient(const quat &q) {
real.mul(q, quat(real));
dual.mul(quat(q).invert(), quat(dual));
}
-
- void mulorient(const quat &q, const dualquat &base)
- {
+ void mulorient(const quat &q, const dualquat &base) {
quat trans;
trans.mul(base.dual, quat(base.real).invert());
dual.mul(quat(q).invert(), quat(real).mul(trans).add(dual));
-
real.mul(q, quat(real));
dual.add(quat().mul(real, trans.invert())).sub(quat(real).mul(2*base.real.dot(base.dual)));
}
-
- void normalize()
- {
+ void normalize() {
float invlen = 1/real.magnitude();
real.mul(invlen);
dual.mul(invlen);
}
-
- void translate(const vec &p)
- {
+ void translate(const vec &p) {
dual.x += 0.5f*( p.x*real.w + p.y*real.z - p.z*real.y);
dual.y += 0.5f*(-p.x*real.z + p.y*real.w + p.z*real.x);
dual.z += 0.5f*( p.x*real.y - p.y*real.x + p.z*real.w);
dual.w += -0.5f*( p.x*real.x + p.y*real.y + p.z*real.z);
}
-
- void scale(float k)
- {
+ void scale(float k) {
dual.mul(k);
}
-
- void fixantipodal(const dualquat &d)
- {
- if(real.dot(d.real) < 0)
- {
+ void fixantipodal(const dualquat &d) {
+ if(real.dot(d.real) < 0) {
real.neg();
dual.neg();
}
}
-
- void accumulate(const dualquat &d, float k)
- {
+ void accumulate(const dualquat &d, float k) {
if(real.dot(d.real) < 0) k = -k;
real.add(vec4(d.real).mul(k));
dual.add(vec4(d.dual).mul(k));
}
-
- vec transform(const vec &v) const
- {
+ vec transform(const vec &v) const {
return vec().cross(real, vec().cross(real, v).add(vec(v).mul(real.w)).add(vec(dual))).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2).add(v);
}
-
- quat transform(const quat &q) const
- {
+ quat transform(const quat &q) const {
return quat().mul(real, q);
}
-
- vec transposedtransform(const vec &v) const
- {
+ vec transposedtransform(const vec &v) const {
return dualquat(*this).invert().transform(v);
}
-
- vec transformnormal(const vec &v) const
- {
+ vec transformnormal(const vec &v) const {
return real.rotate(v);
}
-
- vec transposedtransformnormal(const vec &v) const
- {
+ vec transposedtransformnormal(const vec &v) const {
return real.invertedrotate(v);
}
-
- vec gettranslation() const
- {
+ vec gettranslation() const {
return vec().cross(real, dual).add(vec(dual).mul(real.w)).sub(vec(real).mul(dual.w)).mul(2);
}
};
-struct matrix3
-{
+struct matrix3 {
vec a, b, c;
-
matrix3() {}
matrix3(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {}
explicit matrix3(float angle, const vec &axis) { rotate(angle, axis); }
- explicit matrix3(const quat &q)
- {
+ explicit matrix3(const quat &q) {
float x = q.x, y = q.y, z = q.z, w = q.w,
tx = 2*x, ty = 2*y, tz = 2*z,
txx = tx*x, tyy = ty*y, tzz = tz*z,
@@ -585,47 +467,35 @@ struct matrix3
}
explicit matrix3(const matrix4x3 &m);
explicit matrix3(const matrix4 &m);
-
- void mul(const matrix3 &m, const matrix3 &n)
- {
+ void mul(const matrix3 &m, const matrix3 &n) {
a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z);
b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z);
c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z);
}
void mul(const matrix3 &n) { mul(matrix3(*this), n); }
-
- void multranspose(const matrix3 &m, const matrix3 &n)
- {
+ void multranspose(const matrix3 &m, const matrix3 &n) {
a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x);
b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y);
c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z);
}
void multranspose(const matrix3 &n) { multranspose(matrix3(*this), n); }
-
- void transposemul(const matrix3 &m, const matrix3 &n)
- {
+ void transposemul(const matrix3 &m, const matrix3 &n) {
a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a));
b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b));
c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c));
}
void transposemul(const matrix3 &n) { transposemul(matrix3(*this), n); }
-
- void transpose()
- {
+ void transpose() {
swap(a.y, b.x); swap(a.z, c.x);
swap(b.z, c.y);
}
-
template<class M>
- void transpose(const M &m)
- {
+ void transpose(const M &m) {
a = vec(m.a.x, m.b.x, m.c.x);
b = vec(m.a.y, m.b.y, m.c.y);
c = vec(m.a.z, m.b.z, m.c.z);
}
-
- void invert(const matrix3 &o)
- {
+ void invert(const matrix3 &o) {
vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen());
transpose(o);
a.mul(unscale);
@@ -633,53 +503,36 @@ struct matrix3
c.mul(unscale);
}
void invert() { invert(matrix3(*this)); }
-
- void normalize()
- {
+ void normalize() {
a.normalize();
b.normalize();
c.normalize();
}
-
- void scale(float k)
- {
+ void scale(float k) {
a.mul(k);
b.mul(k);
c.mul(k);
}
-
- void rotate(float angle, const vec &axis)
- {
+ void rotate(float angle, const vec &axis) {
rotate(cosf(angle), sinf(angle), axis);
}
-
- void rotate(float ck, float sk, const vec &axis)
- {
+ void rotate(float ck, float sk, const vec &axis) {
a = vec(axis.x*axis.x*(1-ck)+ck, axis.x*axis.y*(1-ck)+axis.z*sk, axis.x*axis.z*(1-ck)-axis.y*sk);
b = vec(axis.x*axis.y*(1-ck)-axis.z*sk, axis.y*axis.y*(1-ck)+ck, axis.y*axis.z*(1-ck)+axis.x*sk);
c = vec(axis.x*axis.z*(1-ck)+axis.y*sk, axis.y*axis.z*(1-ck)-axis.x*sk, axis.z*axis.z*(1-ck)+ck);
}
-
- void setyaw(float ck, float sk)
- {
+ void setyaw(float ck, float sk) {
a = vec(ck, sk, 0);
b = vec(-sk, ck, 0);
c = vec(0, 0, 1);
}
-
- void setyaw(float angle)
- {
+ void setyaw(float angle) {
setyaw(cosf(angle), sinf(angle));
}
-
float trace() const { return a.x + b.y + c.z; }
-
- bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const
- {
- if(tr <= -1)
- {
- if(a.x >= b.y && a.x >= c.z)
- {
+ bool calcangleaxis(float tr, float &angle, vec &axis, float threshold = 1e-16f) const {
+ if(tr <= -1) {
+ if(a.x >= b.y && a.x >= c.z) {
float r = 1 + a.x - b.y - c.z;
if(r <= threshold) return false;
r = sqrtf(r);
@@ -687,8 +540,7 @@ struct matrix3
axis.y = b.x/r;
axis.z = c.x/r;
}
- else if(b.y >= c.z)
- {
+ else if(b.y >= c.z) {
float r = 1 + b.y - a.x - c.z;
if(r <= threshold) return false;
r = sqrtf(r);
@@ -696,8 +548,7 @@ struct matrix3
axis.x = b.x/r;
axis.z = c.y/r;
}
- else
- {
+ else {
float r = 1 + b.y - a.x - c.z;
if(r <= threshold) return false;
r = sqrtf(r);
@@ -707,13 +558,11 @@ struct matrix3
}
angle = M_PI;
}
- else if(tr >= 3)
- {
+ else if(tr >= 3) {
axis = vec(0, 0, 1);
angle = 0;
}
- else
- {
+ else {
axis = vec(b.z - c.y, c.x - a.z, a.y - b.x);
float r = axis.squaredlen();
if(r <= threshold) return false;
@@ -722,32 +571,23 @@ struct matrix3
}
return true;
}
-
bool calcangleaxis(float &angle, vec &axis, float threshold = 1e-16f) const { return calcangleaxis(trace(), angle, axis, threshold); }
-
- vec transform(const vec &o) const
- {
+ vec transform(const vec &o) const {
return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z);
}
vec transposedtransform(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); }
- vec abstransform(const vec &o) const
- {
+ vec abstransform(const vec &o) const {
return vec(a).mul(o.x).abs().add(vec(b).mul(o.y).abs()).add(vec(c).mul(o.z).abs());
}
- vec abstransposedtransform(const vec &o) const
- {
+ vec abstransposedtransform(const vec &o) const {
return vec(a.absdot(o), b.absdot(o), c.absdot(o));
}
-
- void identity()
- {
+ void identity() {
a = vec(1, 0, 0);
b = vec(0, 1, 0);
c = vec(0, 0, 1);
}
-
- void rotate_around_x(float ck, float sk)
- {
+ void rotate_around_x(float ck, float sk) {
vec rb = vec(b).mul(ck).madd(c, sk),
rc = vec(c).mul(ck).msub(b, sk);
b = rb;
@@ -755,9 +595,7 @@ struct matrix3
}
void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); }
void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); }
-
- void rotate_around_y(float ck, float sk)
- {
+ void rotate_around_y(float ck, float sk) {
vec rc = vec(c).mul(ck).madd(a, sk),
ra = vec(a).mul(ck).msub(c, sk);
c = rc;
@@ -765,9 +603,7 @@ struct matrix3
}
void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); }
void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); }
-
- void rotate_around_z(float ck, float sk)
- {
+ void rotate_around_z(float ck, float sk) {
vec ra = vec(a).mul(ck).madd(b, sk),
rb = vec(b).mul(ck).msub(a, sk);
a = ra;
@@ -775,24 +611,19 @@ struct matrix3
}
void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); }
void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); }
-
vec transform(const vec2 &o) { return vec(a).mul(o.x).madd(b, o.y); }
vec transposedtransform(const vec2 &o) const { return vec(a.dot2(o), b.dot2(o), c.dot2(o)); }
-
vec rowx() const { return vec(a.x, b.x, c.x); }
vec rowy() const { return vec(a.y, b.y, c.y); }
vec rowz() const { return vec(a.z, b.z, c.z); }
};
-struct matrix4x3
-{
+struct matrix4x3 {
vec a, b, c, d;
-
matrix4x3() {}
matrix4x3(const vec &a, const vec &b, const vec &c, const vec &d) : a(a), b(b), c(c), d(d) {}
matrix4x3(const matrix3 &rot, const vec &trans) : a(rot.a), b(rot.b), c(rot.c), d(trans) {}
- matrix4x3(const dualquat &dq)
- {
+ matrix4x3(const dualquat &dq) {
vec4 r = vec4(dq.real).mul(1/dq.real.squaredlen()), rr = vec4(r).mul(dq.real);
r.mul(2);
float xy = r.x*dq.real.y, xz = r.x*dq.real.z, yz = r.y*dq.real.z,
@@ -803,138 +634,104 @@ struct matrix4x3
d = vec(-(dq.dual.w*r.x - dq.dual.x*r.w + dq.dual.y*r.z - dq.dual.z*r.y),
-(dq.dual.w*r.y - dq.dual.x*r.z - dq.dual.y*r.w + dq.dual.z*r.x),
-(dq.dual.w*r.z + dq.dual.x*r.y - dq.dual.y*r.x - dq.dual.z*r.w));
-
}
explicit matrix4x3(const matrix4 &m);
-
- void mul(float k)
- {
+ void mul(float k) {
a.mul(k);
b.mul(k);
c.mul(k);
d.mul(k);
}
-
void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; }
void setscale(const vec &v) { setscale(v.x, v.y, v.z); }
void setscale(float n) { setscale(n, n, n); }
-
- void scale(float x, float y, float z)
- {
+ void scale(float x, float y, float z) {
a.mul(x);
b.mul(y);
c.mul(z);
}
void scale(const vec &v) { scale(v.x, v.y, v.z); }
void scale(float n) { scale(n, n, n); }
-
void settranslation(const vec &p) { d = p; }
void settranslation(float x, float y, float z) { d = vec(x, y, z); }
-
void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); }
void translate(float x, float y, float z) { translate(vec(x, y, z)); }
void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); }
-
void posttranslate(const vec &p) { d.add(p); }
void posttranslate(float x, float y, float z) { posttranslate(vec(x, y, z)); }
void posttranslate(const vec &p, float scale) { d.madd(p, scale); }
-
- void accumulate(const matrix4x3 &m, float k)
- {
+ void accumulate(const matrix4x3 &m, float k) {
a.madd(m.a, k);
b.madd(m.b, k);
c.madd(m.c, k);
d.madd(m.d, k);
}
-
- void normalize()
- {
+ void normalize() {
a.normalize();
b.normalize();
c.normalize();
}
-
- void lerp(const matrix4x3 &to, float t)
- {
+ void lerp(const matrix4x3 &to, float t) {
a.lerp(to.a, t);
b.lerp(to.b, t);
c.lerp(to.c, t);
d.lerp(to.d, t);
}
- void lerp(const matrix4x3 &from, const matrix4x3 &to, float t)
- {
+ void lerp(const matrix4x3 &from, const matrix4x3 &to, float t) {
a.lerp(from.a, to.a, t);
b.lerp(from.b, to.b, t);
c.lerp(from.c, to.c, t);
d.lerp(from.d, to.d, t);
}
-
- void identity()
- {
+ void identity() {
a = vec(1, 0, 0);
b = vec(0, 1, 0);
c = vec(0, 0, 1);
d = vec(0, 0, 0);
}
-
- void mul(const matrix4x3 &m, const matrix4x3 &n)
- {
+ void mul(const matrix4x3 &m, const matrix4x3 &n) {
a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z);
b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z);
c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z);
d = vec(m.d).madd(m.a, n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z);
}
void mul(const matrix4x3 &n) { mul(matrix4x3(*this), n); }
-
- void mul(const matrix3 &m, const matrix4x3 &n)
- {
+ void mul(const matrix3 &m, const matrix4x3 &n) {
a = vec(m.a).mul(n.a.x).madd(m.b, n.a.y).madd(m.c, n.a.z);
b = vec(m.a).mul(n.b.x).madd(m.b, n.b.y).madd(m.c, n.b.z);
c = vec(m.a).mul(n.c.x).madd(m.b, n.c.y).madd(m.c, n.c.z);
d = vec(m.a).mul(n.d.x).madd(m.b, n.d.y).madd(m.c, n.d.z);
}
-
- void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n)
- {
+ void mul(const matrix3 &rot, const vec &trans, const matrix4x3 &n) {
mul(rot, n);
d.add(trans);
}
-
- void transpose()
- {
+ void transpose() {
d = vec(a.dot(d), b.dot(d), c.dot(d)).neg();
swap(a.y, b.x); swap(a.z, c.x);
swap(b.z, c.y);
}
-
- void transpose(const matrix4x3 &o)
- {
+ void transpose(const matrix4x3 &o) {
a = vec(o.a.x, o.b.x, o.c.x);
b = vec(o.a.y, o.b.y, o.c.y);
c = vec(o.a.z, o.b.z, o.c.z);
d = vec(o.a.dot(o.d), o.b.dot(o.d), o.c.dot(o.d)).neg();
}
-
- void transposemul(const matrix4x3 &m, const matrix4x3 &n)
- {
+ void transposemul(const matrix4x3 &m, const matrix4x3 &n) {
vec t(m.a.dot(m.d), m.b.dot(m.d), m.c.dot(m.d));
a = vec(m.a.dot(n.a), m.b.dot(n.a), m.c.dot(n.a));
b = vec(m.a.dot(n.b), m.b.dot(n.b), m.c.dot(n.b));
c = vec(m.a.dot(n.c), m.b.dot(n.c), m.c.dot(n.c));
d = vec(m.a.dot(n.d), m.b.dot(n.d), m.c.dot(n.d)).sub(t);
}
-
- void multranspose(const matrix4x3 &m, const matrix4x3 &n)
- {
+ void multranspose(const matrix4x3 &m, const matrix4x3 &n) {
vec t(n.a.dot(n.d), n.b.dot(n.d), n.c.dot(n.d));
a = vec(m.a).mul(n.a.x).madd(m.b, n.b.x).madd(m.c, n.c.x);
b = vec(m.a).mul(n.a.y).madd(m.b, n.b.y).madd(m.c, n.c.y);
c = vec(m.a).mul(n.a.z).madd(m.b, n.b.z).madd(m.c, n.c.z);
d = vec(m.d).msub(m.a, t.x).msub(m.b, t.y).msub(m.c, t.z);
}
-
- void invert(const matrix4x3 &o)
- {
+ void invert(const matrix4x3 &o) {
vec unscale(1/o.a.squaredlen(), 1/o.b.squaredlen(), 1/o.c.squaredlen());
transpose(o);
a.mul(unscale);
@@ -943,21 +740,15 @@ struct matrix4x3
d.mul(unscale);
}
void invert() { invert(matrix4x3(*this)); }
-
- void rotate(float angle, const vec &d)
- {
+ void rotate(float angle, const vec &d) {
rotate(cosf(angle), sinf(angle), d);
}
-
- void rotate(float ck, float sk, const vec &axis)
- {
+ void rotate(float ck, float sk, const vec &axis) {
matrix3 m;
m.rotate(ck, sk, axis);
*this = matrix4x3(m, vec(0, 0, 0));
}
-
- void rotate_around_x(float ck, float sk)
- {
+ void rotate_around_x(float ck, float sk) {
vec rb = vec(b).mul(ck).madd(c, sk),
rc = vec(c).mul(ck).msub(b, sk);
b = rb;
@@ -965,9 +756,7 @@ struct matrix4x3
}
void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); }
void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); }
-
- void rotate_around_y(float ck, float sk)
- {
+ void rotate_around_y(float ck, float sk) {
vec rc = vec(c).mul(ck).madd(a, sk),
ra = vec(a).mul(ck).msub(c, sk);
c = rc;
@@ -975,9 +764,7 @@ struct matrix4x3
}
void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); }
void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); }
-
- void rotate_around_z(float ck, float sk)
- {
+ void rotate_around_z(float ck, float sk) {
vec ra = vec(a).mul(ck).madd(b, sk),
rb = vec(b).mul(ck).msub(a, sk);
a = ra;
@@ -985,20 +772,17 @@ struct matrix4x3
}
void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); }
void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); }
-
vec transform(const vec &o) const { return vec(d).madd(a, o.x).madd(b, o.y).madd(c, o.z); }
vec transposedtransform(const vec &o) const { vec p = vec(o).sub(d); return vec(a.dot(p), b.dot(p), c.dot(p)); }
vec transformnormal(const vec &o) const { return vec(a).mul(o.x).madd(b, o.y).madd(c, o.z); }
vec transposedtransformnormal(const vec &o) const { return vec(a.dot(o), b.dot(o), c.dot(o)); }
vec transform(const vec2 &o) const { return vec(d).madd(a, o.x).madd(b, o.y); }
-
vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); }
vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); }
vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); }
};
-inline dualquat::dualquat(const matrix4x3 &m) : real(m)
-{
+inline dualquat::dualquat(const matrix4x3 &m) : real(m) {
dual.x = 0.5f*( m.d.x*real.w + m.d.y*real.z - m.d.z*real.y);
dual.y = 0.5f*(-m.d.x*real.z + m.d.y*real.w + m.d.z*real.x);
dual.z = 0.5f*( m.d.x*real.y - m.d.y*real.x + m.d.z*real.w);
@@ -1007,34 +791,26 @@ inline dualquat::dualquat(const matrix4x3 &m) : real(m)
inline matrix3::matrix3(const matrix4x3 &m) : a(m.a), b(m.b), c(m.c) {}
-struct plane : vec
-{
+struct plane : vec {
float offset;
-
float dist(const vec &p) const { return dot(p)+offset; }
float dist(const vec4 &p) const { return p.dot3(*this) + p.w*offset; }
bool operator==(const plane &p) const { return x==p.x && y==p.y && z==p.z && offset==p.offset; }
bool operator!=(const plane &p) const { return x!=p.x || y!=p.y || z!=p.z || offset!=p.offset; }
-
plane() {}
plane(const vec &c, float off) : vec(c), offset(off) {}
plane(const vec4 &p) : vec(p), offset(p.w) {}
- plane(int d, float off)
- {
+ plane(int d, float off) {
x = y = z = 0.0f;
v[d] = 1.0f;
offset = -off;
}
plane(float a, float b, float c, float d) : vec(a, b, c), offset(d) {}
-
- void toplane(const vec &n, const vec &p)
- {
+ void toplane(const vec &n, const vec &p) {
x = n.x; y = n.y; z = n.z;
offset = -dot(p);
}
-
- bool toplane(const vec &a, const vec &b, const vec &c)
- {
+ bool toplane(const vec &a, const vec &b, const vec &c) {
cross(vec(b).sub(a), vec(c).sub(a));
float mag = magnitude();
if(!mag) return false;
@@ -1042,65 +818,48 @@ struct plane : vec
offset = -dot(a);
return true;
}
-
- bool rayintersect(const vec &o, const vec &ray, float &dist)
- {
+ bool rayintersect(const vec &o, const vec &ray, float &dist) {
float cosalpha = dot(ray);
if(cosalpha==0) return false;
float deltac = offset+dot(o);
dist -= deltac/cosalpha;
return true;
}
-
- plane &reflectz(float rz)
- {
+ plane &reflectz(float rz) {
offset += 2*rz*z;
z = -z;
return *this;
}
-
- plane &invert()
- {
+ plane &invert() {
neg();
offset = -offset;
return *this;
}
-
- plane &scale(float k)
- {
+ plane &scale(float k) {
mul(k);
return *this;
}
-
- plane &translate(const vec &p)
- {
+ plane &translate(const vec &p) {
offset += dot(p);
return *this;
}
-
- plane &normalize()
- {
+ plane &normalize() {
float mag = magnitude();
div(mag);
offset /= mag;
return *this;
}
-
float zintersect(const vec &p) const { return -(x*p.x+y*p.y+offset)/z; }
float zdelta(const vec &p) const { return -(x*p.x+y*p.y)/z; }
float zdist(const vec &p) const { return p.z-zintersect(p); }
};
-struct triangle
-{
+struct triangle {
vec a, b, c;
-
triangle(const vec &a, const vec &b, const vec &c) : a(a), b(b), c(c) {}
triangle() {}
-
triangle &add(const vec &o) { a.add(o); b.add(o); c.add(o); return *this; }
triangle &sub(const vec &o) { a.sub(o); b.sub(o); c.sub(o); return *this; }
-
bool operator==(const triangle &t) const { return a == t.a && b == t.b && c == t.c; }
};
@@ -1131,20 +890,16 @@ struct ivec2;
struct usvec;
struct svec;
-struct ivec
-{
- union
- {
+struct ivec {
+ union {
struct { int x, y, z; };
struct { int r, g, b; };
int v[3];
};
-
ivec() {}
explicit ivec(const vec &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)) {}
ivec(int a, int b, int c) : x(a), y(b), z(c) {}
- ivec(int d, int row, int col, int depth)
- {
+ ivec(int d, int row, int col, int depth) {
v[R[d]] = row;
v[C[d]] = col;
v[D[d]] = depth;
@@ -1154,10 +909,8 @@ struct ivec
explicit ivec(const ivec2 &v, int z = 0);
explicit ivec(const usvec &v);
explicit ivec(const svec &v);
-
- int &operator[](int i) { return v[i]; }
+ int &operator[](int i) { return v[i]; }
int operator[](int i) const { return v[i]; }
-
//int idx(int i) { return v[i]; }
bool operator==(const ivec &v) const { return x==v.x && y==v.y && z==v.z; }
bool operator!=(const ivec &v) const { return x!=v.x || y!=v.y || z!=v.z; }
@@ -1183,42 +936,33 @@ struct ivec
ivec &cross(const ivec &a, const ivec &b) { x = a.y*b.z-a.z*b.y; y = a.z*b.x-a.x*b.z; z = a.x*b.y-a.y*b.x; return *this; }
int dot(const ivec &o) const { return x*o.x + y*o.y + z*o.z; }
float dist(const plane &p) const { return x*p.x + y*p.y + z*p.z + p.offset; }
-
static inline ivec floor(const vec &o) { return ivec(int(::floor(o.x)), int(::floor(o.y)), int(::floor(o.z))); }
static inline ivec ceil(const vec &o) { return ivec(int(::ceil(o.x)), int(::ceil(o.y)), int(::ceil(o.z))); }
};
inline vec::vec(const ivec &v) : x(v.x), y(v.y), z(v.z) {}
-static inline bool htcmp(const ivec &x, const ivec &y)
-{
+static inline bool htcmp(const ivec &x, const ivec &y) {
return x == y;
}
-static inline uint hthash(const ivec &k)
-{
+static inline uint hthash(const ivec &k) {
return k.x^k.y^k.z;
}
-struct ivec2
-{
- union
- {
+struct ivec2 {
+ union {
struct { int x, y; };
int v[2];
};
-
ivec2() {}
ivec2(int x, int y) : x(x), y(y) {}
explicit ivec2(const vec2 &v) : x(int(v.x)), y(int(v.y)) {}
explicit ivec2(const ivec &v) : x(v.x), y(v.y) {}
-
- int &operator[](int i) { return v[i]; }
+ int &operator[](int i) { return v[i]; }
int operator[](int i) const { return v[i]; }
-
bool operator==(const ivec2 &o) const { return x == o.x && y == o.y; }
bool operator!=(const ivec2 &o) const { return x != o.x || y != o.y; }
-
bool iszero() const { return x==0 && y==0; }
ivec2 &shl(int n) { x<<= n; y<<= n; return *this; }
ivec2 &shr(int n) { x>>= n; y>>= n; return *this; }
@@ -1243,74 +987,57 @@ struct ivec2
inline ivec::ivec(const ivec2 &v, int z) : x(v.x), y(v.y), z(z) {}
-static inline bool htcmp(const ivec2 &x, const ivec2 &y)
-{
+static inline bool htcmp(const ivec2 &x, const ivec2 &y) {
return x == y;
}
-static inline uint hthash(const ivec2 &k)
-{
+static inline uint hthash(const ivec2 &k) {
return k.x^k.y;
}
-struct ivec4
-{
- union
- {
+struct ivec4 {
+ union {
struct { int x, y, z, w; };
struct { int r, g, b, a; };
int v[4];
};
-
ivec4() {}
explicit ivec4(const ivec &p, int w = 0) : x(p.x), y(p.y), z(p.z), w(w) {}
ivec4(int x, int y, int z, int w) : x(x), y(y), z(z), w(w) {}
explicit ivec4(const vec4 &v) : x(int(v.x)), y(int(v.y)), z(int(v.z)), w(int(v.w)) {}
-
bool operator==(const ivec4 &o) const { return x == o.x && y == o.y && z == o.z && w == o.w; }
bool operator!=(const ivec4 &o) const { return x != o.x || y != o.y || z != o.z || w != o.w; }
};
inline ivec::ivec(const ivec4 &v) : x(v.x), y(v.y), z(v.z) {}
-static inline bool htcmp(const ivec4 &x, const ivec4 &y)
-{
+static inline bool htcmp(const ivec4 &x, const ivec4 &y) {
return x == y;
}
-static inline uint hthash(const ivec4 &k)
-{
+static inline uint hthash(const ivec4 &k) {
return k.x^k.y^k.z^k.w;
}
struct bvec4;
-struct bvec
-{
- union
- {
+struct bvec {
+ union {
struct { uchar x, y, z; };
struct { uchar r, g, b; };
uchar v[3];
};
-
bvec() {}
bvec(uchar x, uchar y, uchar z) : x(x), y(y), z(z) {}
explicit bvec(const vec &v) : x(uchar((v.x+1)*(255.0f/2.0f))), y(uchar((v.y+1)*(255.0f/2.0f))), z(uchar((v.z+1)*(255.0f/2.0f))) {}
explicit bvec(const bvec4 &v);
-
- uchar &operator[](int i) { return v[i]; }
+ uchar &operator[](int i) { return v[i]; }
uchar operator[](int i) const { return v[i]; }
-
bool operator==(const bvec &v) const { return x==v.x && y==v.y && z==v.z; }
bool operator!=(const bvec &v) const { return x!=v.x || y!=v.y || z!=v.z; }
-
bool iszero() const { return x==0 && y==0 && z==0; }
-
vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); }
-
- bvec &normalize()
- {
+ bvec &normalize() {
vec n(x-127.5f, y-127.5f, z-127.5f);
float mag = 127.5f/n.magnitude();
x = uchar(n.x*mag+127.5f);
@@ -1318,193 +1045,144 @@ struct bvec
z = uchar(n.z*mag+127.5f);
return *this;
}
-
void lerp(const bvec &a, const bvec &b, float t) { x = uchar(a.x + (b.x-a.x)*t); y = uchar(a.y + (b.y-a.y)*t); z = uchar(a.z + (b.z-a.z)*t); }
-
- void lerp(const bvec &a, const bvec &b, int ka, int kb, int d)
- {
+ void lerp(const bvec &a, const bvec &b, int ka, int kb, int d) {
x = uchar((a.x*ka + b.x*kb)/d);
y = uchar((a.y*ka + b.y*kb)/d);
z = uchar((a.z*ka + b.z*kb)/d);
}
-
void flip() { x ^= 0x80; y ^= 0x80; z ^= 0x80; }
-
void scale(int k, int d) { x = uchar((x*k)/d); y = uchar((y*k)/d); z = uchar((z*k)/d); }
-
bvec &shl(int n) { x<<= n; y<<= n; z<<= n; return *this; }
bvec &shr(int n) { x>>= n; y>>= n; z>>= n; return *this; }
-
static bvec fromcolor(const vec &v) { return bvec(uchar(v.x*255.0f), uchar(v.y*255.0f), uchar(v.z*255.0f)); }
vec tocolor() const { return vec(x*(1.0f/255.0f), y*(1.0f/255.0f), z*(1.0f/255.0f)); }
-
static bvec from565(ushort c) { return bvec((((c>>11)&0x1F)*527 + 15) >> 6, (((c>>5)&0x3F)*259 + 35) >> 6, ((c&0x1F)*527 + 15) >> 6); }
-
- static bvec hexcolor(int color)
- {
+ static bvec hexcolor(int color) {
return bvec((color>>16)&0xFF, (color>>8)&0xFF, color&0xFF);
}
int tohexcolor() const { return (int(r)<<16)|(int(g)<<8)|int(b); }
};
-struct bvec4
-{
- union
- {
+struct bvec4 {
+ union {
struct { uchar x, y, z, w; };
struct { uchar r, g, b, a; };
uchar v[4];
uint mask;
};
-
bvec4() {}
bvec4(uchar x, uchar y, uchar z, uchar w = 0) : x(x), y(y), z(z), w(w) {}
bvec4(const bvec &v, uchar w = 0) : x(v.x), y(v.y), z(v.z), w(w) {}
-
- uchar &operator[](int i) { return v[i]; }
+ uchar &operator[](int i) { return v[i]; }
uchar operator[](int i) const { return v[i]; }
-
bool operator==(const bvec4 &v) const { return mask==v.mask; }
bool operator!=(const bvec4 &v) const { return mask!=v.mask; }
-
bool iszero() const { return mask==0; }
-
vec tonormal() const { return vec(x*(2.0f/255.0f)-1.0f, y*(2.0f/255.0f)-1.0f, z*(2.0f/255.0f)-1.0f); }
-
- void lerp(const bvec4 &a, const bvec4 &b, float t)
- {
+ void lerp(const bvec4 &a, const bvec4 &b, float t) {
x = uchar(a.x + (b.x-a.x)*t);
y = uchar(a.y + (b.y-a.y)*t);
z = uchar(a.z + (b.z-a.z)*t);
w = a.w;
}
-
- void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d)
- {
+ void lerp(const bvec4 &a, const bvec4 &b, int ka, int kb, int d) {
x = uchar((a.x*ka + b.x*kb)/d);
y = uchar((a.y*ka + b.y*kb)/d);
z = uchar((a.z*ka + b.z*kb)/d);
w = a.w;
}
-
void flip() { mask ^= 0x80808080; }
};
inline bvec::bvec(const bvec4 &v) : x(v.x), y(v.y), z(v.z) {}
-struct usvec
-{
- union
- {
+struct usvec {
+ union {
struct { ushort x, y, z; };
ushort v[3];
};
-
ushort &operator[](int i) { return v[i]; }
ushort operator[](int i) const { return v[i]; }
};
inline ivec::ivec(const usvec &v) : x(v.x), y(v.y), z(v.z) {}
-struct svec
-{
- union
- {
+struct svec {
+ union {
struct { short x, y, z; };
short v[3];
};
-
svec() {}
svec(short x, short y, short z) : x(x), y(y), z(z) {}
explicit svec(const ivec &v) : x(v.x), y(v.y), z(v.z) {}
-
short &operator[](int i) { return v[i]; }
short operator[](int i) const { return v[i]; }
};
inline ivec::ivec(const svec &v) : x(v.x), y(v.y), z(v.z) {}
-struct svec2
-{
- union
- {
+struct svec2 {
+ union {
struct { short x, y; };
short v[2];
};
-
svec2() {}
svec2(short x, short y) : x(x), y(y) {}
-
short &operator[](int i) { return v[i]; }
short operator[](int i) const { return v[i]; }
-
bool operator==(const svec2 &o) const { return x == o.x && y == o.y; }
bool operator!=(const svec2 &o) const { return x != o.x || y != o.y; }
-
bool iszero() const { return x==0 && y==0; }
};
-struct dvec4
-{
+struct dvec4 {
double x, y, z, w;
-
dvec4() {}
dvec4(double x, double y, double z, double w) : x(x), y(y), z(z), w(w) {}
dvec4(const vec4 &v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
-
template<class B> dvec4 &madd(const dvec4 &a, const B &b) { return add(dvec4(a).mul(b)); }
- dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; }
+ dvec4 &mul(double f) { x *= f; y *= f; z *= f; w *= f; return *this; }
dvec4 &mul(const dvec4 &o) { x *= o.x; y *= o.y; z *= o.z; w *= o.w; return *this; }
- dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; }
+ dvec4 &add(double f) { x += f; y += f; z += f; w += f; return *this; }
dvec4 &add(const dvec4 &o) { x += o.x; y += o.y; z += o.z; w += o.w; return *this; }
-
operator vec4() const { return vec4(x, y, z, w); }
};
-struct matrix4
-{
+struct matrix4 {
vec4 a, b, c, d;
-
matrix4() {}
matrix4(const float *m) : a(m), b(m+4), c(m+8), d(m+12) {}
matrix4(const vec &a, const vec &b, const vec &c = vec(0, 0, 1))
- : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1)
- {}
+ : a(a.x, b.x, c.x, 0), b(a.y, b.y, c.y, 0), c(a.z, b.z, c.z, 0), d(0, 0, 0, 1) {
+ }
matrix4(const vec4 &a, const vec4 &b, const vec4 &c, const vec4 &d = vec4(0, 0, 0, 1))
- : a(a), b(b), c(c), d(d)
- {}
+ : a(a), b(b), c(c), d(d) {
+ }
matrix4(const matrix4x3 &m)
- : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1)
- {}
+ : a(m.a, 0), b(m.b, 0), c(m.c, 0), d(m.d, 1) {
+ }
matrix4(const matrix3 &rot, const vec &trans)
- : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1)
- {}
-
- void mul(const matrix4 &x, const matrix3 &y)
- {
+ : a(rot.a, 0), b(rot.b, 0), c(rot.c, 0), d(trans, 1) {
+ }
+ void mul(const matrix4 &x, const matrix3 &y) {
a = vec4(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z);
b = vec4(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z);
c = vec4(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z);
d = x.d;
}
void mul(const matrix3 &y) { mul(matrix4(*this), y); }
-
- template<class T> void mult(const matrix4 &x, const matrix4 &y)
- {
+ template<class T> void mult(const matrix4 &x, const matrix4 &y) {
a = T(x.a).mul(y.a.x).madd(x.b, y.a.y).madd(x.c, y.a.z).madd(x.d, y.a.w);
b = T(x.a).mul(y.b.x).madd(x.b, y.b.y).madd(x.c, y.b.z).madd(x.d, y.b.w);
c = T(x.a).mul(y.c.x).madd(x.b, y.c.y).madd(x.c, y.c.z).madd(x.d, y.c.w);
d = T(x.a).mul(y.d.x).madd(x.b, y.d.y).madd(x.c, y.d.z).madd(x.d, y.d.w);
}
-
void mul(const matrix4 &x, const matrix4 &y) { mult<vec4>(x, y); }
void mul(const matrix4 &y) { mult<vec4>(matrix4(*this), y); }
-
void muld(const matrix4 &x, const matrix4 &y) { mult<dvec4>(x, y); }
void muld(const matrix4 &y) { mult<dvec4>(matrix4(*this), y); }
-
- void rotate_around_x(float ck, float sk)
- {
+ void rotate_around_x(float ck, float sk) {
vec4 rb = vec4(b).mul(ck).madd(c, sk),
rc = vec4(c).mul(ck).msub(b, sk);
b = rb;
@@ -1512,9 +1190,7 @@ struct matrix4
}
void rotate_around_x(float angle) { rotate_around_x(cosf(angle), sinf(angle)); }
void rotate_around_x(const vec2 &sc) { rotate_around_x(sc.x, sc.y); }
-
- void rotate_around_y(float ck, float sk)
- {
+ void rotate_around_y(float ck, float sk) {
vec4 rc = vec4(c).mul(ck).madd(a, sk),
ra = vec4(a).mul(ck).msub(c, sk);
c = rc;
@@ -1522,9 +1198,7 @@ struct matrix4
}
void rotate_around_y(float angle) { rotate_around_y(cosf(angle), sinf(angle)); }
void rotate_around_y(const vec2 &sc) { rotate_around_y(sc.x, sc.y); }
-
- void rotate_around_z(float ck, float sk)
- {
+ void rotate_around_z(float ck, float sk) {
vec4 ra = vec4(a).mul(ck).madd(b, sk),
rb = vec4(b).mul(ck).msub(a, sk);
a = ra;
@@ -1532,68 +1206,51 @@ struct matrix4
}
void rotate_around_z(float angle) { rotate_around_z(cosf(angle), sinf(angle)); }
void rotate_around_z(const vec2 &sc) { rotate_around_z(sc.x, sc.y); }
-
- void rotate(float ck, float sk, const vec &axis)
- {
+ void rotate(float ck, float sk, const vec &axis) {
matrix3 m;
m.rotate(ck, sk, axis);
mul(m);
}
void rotate(float angle, const vec &dir) { rotate(cosf(angle), sinf(angle), dir); }
void rotate(const vec2 &sc, const vec &dir) { rotate(sc.x, sc.y, dir); }
-
- void identity()
- {
+ void identity() {
a = vec4(1, 0, 0, 0);
b = vec4(0, 1, 0, 0);
c = vec4(0, 0, 1, 0);
d = vec4(0, 0, 0, 1);
}
-
void settranslation(const vec &v) { d.setxyz(v); }
void settranslation(float x, float y, float z) { d.x = x; d.y = y; d.z = z; }
-
void translate(const vec &p) { d.madd(a, p.x).madd(b, p.y).madd(c, p.z); }
void translate(float x, float y, float z) { translate(vec(x, y, z)); }
void translate(const vec &p, float scale) { translate(vec(p).mul(scale)); }
-
void setscale(float x, float y, float z) { a.x = x; b.y = y; c.z = z; }
void setscale(const vec &v) { setscale(v.x, v.y, v.z); }
void setscale(float n) { setscale(n, n, n); }
-
- void scale(float x, float y, float z)
- {
+ void scale(float x, float y, float z) {
a.mul(x);
b.mul(y);
c.mul(z);
}
void scale(const vec &v) { scale(v.x, v.y, v.z); }
void scale(float n) { scale(n, n, n); }
-
- void scalexy(float x, float y)
- {
+ void scalexy(float x, float y) {
a.x *= x; a.y *= y;
b.x *= x; b.y *= y;
c.x *= x; c.y *= y;
d.x *= x; d.y *= y;
}
-
- void scalez(float k)
- {
+ void scalez(float k) {
a.z *= k;
b.z *= k;
c.z *= k;
d.z *= k;
}
-
- void reflectz(float z)
- {
+ void reflectz(float z) {
d.add(vec4(c).mul(2*z));
c.neg();
}
-
- void projective(float zscale = 0.5f, float zoffset = 0.5f)
- {
+ void projective(float zscale = 0.5f, float zoffset = 0.5f) {
a.x = 0.5f*(a.x + a.w);
a.y = 0.5f*(a.y + a.w);
b.x = 0.5f*(b.x + b.w);
@@ -1607,9 +1264,7 @@ struct matrix4
c.z = zscale*c.z + zoffset*c.w;
d.z = zscale*d.z + zoffset*d.w;
}
-
- void jitter(float x, float y)
- {
+ void jitter(float x, float y) {
a.x += x * a.w;
a.y += y * a.w;
b.x += x * b.w;
@@ -1619,48 +1274,36 @@ struct matrix4
d.x += x * d.w;
d.y += y * d.w;
}
-
- void transpose()
- {
+ void transpose() {
swap(a.y, b.x); swap(a.z, c.x); swap(a.w, d.x);
swap(b.z, c.y); swap(b.w, d.y);
swap(c.w, d.z);
}
-
- void transpose(const matrix4 &m)
- {
+ void transpose(const matrix4 &m) {
a = vec4(m.a.x, m.b.x, m.c.x, m.d.x);
b = vec4(m.a.y, m.b.y, m.c.y, m.d.y);
c = vec4(m.a.z, m.b.z, m.c.z, m.d.z);
d = vec4(m.a.w, m.b.w, m.c.w, m.d.w);
}
-
- void frustum(float left, float right, float bottom, float top, float znear, float zfar)
- {
+ void frustum(float left, float right, float bottom, float top, float znear, float zfar) {
float width = right - left, height = top - bottom, zrange = znear - zfar;
a = vec4(2*znear/width, 0, 0, 0);
b = vec4(0, 2*znear/height, 0, 0);
c = vec4((right + left)/width, (top + bottom)/height, (zfar + znear)/zrange, -1);
d = vec4(0, 0, 2*znear*zfar/zrange, 0);
}
-
- void perspective(float fovy, float aspect, float znear, float zfar)
- {
+ void perspective(float fovy, float aspect, float znear, float zfar) {
float ydist = znear * tan(fovy/2*RAD), xdist = ydist * aspect;
frustum(-xdist, xdist, -ydist, ydist, znear, zfar);
}
-
- void ortho(float left, float right, float bottom, float top, float znear, float zfar)
- {
+ void ortho(float left, float right, float bottom, float top, float znear, float zfar) {
float width = right - left, height = top - bottom, zrange = znear - zfar;
a = vec4(2/width, 0, 0, 0);
b = vec4(0, 2/height, 0, 0);
c = vec4(0, 0, 2/zrange, 0);
d = vec4(-(right+left)/width, -(top+bottom)/height, (zfar+znear)/zrange, 1);
}
-
- void clip(const plane &p, const matrix4 &m)
- {
+ void clip(const plane &p, const matrix4 &m) {
float x = ((p.x<0 ? -1 : (p.x>0 ? 1 : 0)) + m.c.x) / m.a.x,
y = ((p.y<0 ? -1 : (p.y>0 ? 1 : 0)) + m.c.y) / m.b.y,
w = (1 + m.c.z) / m.d.z,
@@ -1670,134 +1313,96 @@ struct matrix4
c = vec4(m.c.x, m.c.y, p.z*scale + 1.0f, m.c.w);
d = vec4(m.d.x, m.d.y, p.offset*scale, m.d.w);
}
-
- void transform(const vec &in, vec &out) const
- {
+ void transform(const vec &in, vec &out) const {
out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d));
}
-
- void transform(const vec4 &in, vec &out) const
- {
+ void transform(const vec4 &in, vec &out) const {
out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z)).add(vec(d).mul(in.w));
}
-
- void transform(const vec &in, vec4 &out) const
- {
+ void transform(const vec &in, vec4 &out) const {
out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).add(d);
}
-
- void transform(const vec4 &in, vec4 &out) const
- {
+ void transform(const vec4 &in, vec4 &out) const {
out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z).madd(d, in.w);
}
-
- template<class T, class U> T transform(const U &in) const
- {
+ template<class T, class U> T transform(const U &in) const {
T v;
transform(in, v);
return v;
}
-
- template<class T> vec perspectivetransform(const T &in) const
- {
+ template<class T> vec perspectivetransform(const T &in) const {
vec4 v;
transform(in, v);
return vec(v).div(v.w);
}
-
- void transformnormal(const vec &in, vec &out) const
- {
+ void transformnormal(const vec &in, vec &out) const {
out = vec(a).mul(in.x).add(vec(b).mul(in.y)).add(vec(c).mul(in.z));
}
-
- void transformnormal(const vec &in, vec4 &out) const
- {
+ void transformnormal(const vec &in, vec4 &out) const {
out = vec4(a).mul(in.x).madd(b, in.y).madd(c, in.z);
}
-
- template<class T, class U> T transformnormal(const U &in) const
- {
+ template<class T, class U> T transformnormal(const U &in) const {
T v;
transformnormal(in, v);
return v;
}
-
- void transposedtransform(const vec &in, vec &out) const
- {
+ void transposedtransform(const vec &in, vec &out) const {
vec p = vec(in).sub(vec(d));
out.x = a.dot3(p);
out.y = b.dot3(p);
out.z = c.dot3(p);
}
-
- void transposedtransformnormal(const vec &in, vec &out) const
- {
+ void transposedtransformnormal(const vec &in, vec &out) const {
out.x = a.dot3(in);
out.y = b.dot3(in);
out.z = c.dot3(in);
}
-
- void transposedtransform(const plane &in, plane &out) const
- {
+ void transposedtransform(const plane &in, plane &out) const {
out.x = in.dist(a);
out.y = in.dist(b);
out.z = in.dist(c);
out.offset = in.dist(d);
}
-
- float getscale() const
- {
+ float getscale() const {
return sqrtf(a.x*a.y + b.x*b.x + c.x*c.x);
}
-
- vec gettranslation() const
- {
+ vec gettranslation() const {
return vec(d);
}
-
vec4 rowx() const { return vec4(a.x, b.x, c.x, d.x); }
vec4 rowy() const { return vec4(a.y, b.y, c.y, d.y); }
vec4 rowz() const { return vec4(a.z, b.z, c.z, d.z); }
vec4 roww() const { return vec4(a.w, b.w, c.w, d.w); }
-
bool invert(const matrix4 &m, double mindet = 1.0e-12);
};
inline matrix3::matrix3(const matrix4 &m)
- : a(m.a), b(m.b), c(m.c)
-{}
+ : a(m.a), b(m.b), c(m.c) {
+}
inline matrix4x3::matrix4x3(const matrix4 &m)
- : a(m.a), b(m.b), c(m.c), d(m.d)
-{}
+ : a(m.a), b(m.b), c(m.c), d(m.d) {
+}
-struct matrix2
-{
+struct matrix2 {
vec2 a, b;
-
matrix2() {}
matrix2(const vec2 &a, const vec2 &b) : a(a), b(b) {}
explicit matrix2(const matrix4 &m) : a(m.a), b(m.b) {}
explicit matrix2(const matrix3 &m) : a(m.a), b(m.b) {}
};
-struct squat
-{
+struct squat {
short x, y, z, w;
-
squat() {}
squat(const vec4 &q) { convert(q); }
-
- void convert(const vec4 &q)
- {
+ void convert(const vec4 &q) {
x = short(q.x*32767.5f-0.5f);
y = short(q.y*32767.5f-0.5f);
z = short(q.z*32767.5f-0.5f);
w = short(q.w*32767.5f-0.5f);
}
-
- void lerp(const vec4 &a, const vec4 &b, float t)
- {
+ void lerp(const vec4 &a, const vec4 &b, float t) {
vec4 q;
q.lerp(a, b, t);
convert(q);
@@ -1809,8 +1414,7 @@ extern bool rayboxintersect(const vec &b, const vec &s, const vec &o, const vec
extern bool linecylinderintersect(const vec &from, const vec &to, const vec &start, const vec &end, float radius, float &dist);
extern const vec2 sincos360[];
-static inline int mod360(int angle)
-{
+static inline int mod360(int angle) {
if(angle < 0) angle = 360 + (angle <= -360 ? angle%360 : angle);
else if(angle >= 360) angle %= 360;
return angle;